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Introduction

During the past decades, the field of Machine Learning has been very successful in designing mathematical models and learning algorithms to learn
automatically how to modelize data in order to obtain latent representation leading to incredible performance both in classification tasks and in gener-
ating credible new data from a data-set. Such powerful tools have potentially a broad application in many other fields, and in particular in Statistical
Physics. In this work, we explore the possibility of using neural networks to predict the thermodynamic properties of the spin glass Edwards-Anderson
model, just by looking at the interaction network. If such a machine existed, it should be able to detect a complex non-local symmetry that couples the
physical properties of large groups of disorder realizations (samples): a gauge symmetry. In this work, we tackle the problem of designing a neural
network able to distinguish if two samples are, or not, related by a gauge transformation.

Definitions

The 2D Edwards-Anderson model is de-
fined on a square Euclidean lattice by the fol-
lowing Hamiltonian

H = −
∑
〈i,j〉

Jijsisj (1)

The spins si = ±1 are dynamical variables
and lie on the N lattice sites, and the couplings
Jij = ±1 are random but quenched variables
and are placed on the 2N edges of the lattice.
The actual distribution of Jij in each realization
defines a sample.

The Hamiltonian (1) is invariant under the
following gauge transform

s′i = εisi J
′

ij = εiεjJij ∀i, j ∈ N

for any possible choice of {εi = ±1}, which
means that all the samples related by this sym-
metry (same gauge orbit) have identical ther-
modynamic properties.

This symmetry can be formulated in a dif-
ferent way: if two samples are gauge symmet-
ric, the product of Jij along any closed loop
remain unchanged ! This makes this symme-
try particularly difficult to identify since it is
not enough to look at local properties (such as
small "plaquette") !

Deep Neural Network and Data-set

Deep neural networks (DNNs) are partic-
ularly adapted to deal with problems on reg-
ular lattices. In particular, convolutional lay-
ers are often used as a features detector on im-
ages. In our work, we used the Keras library
in order to test the ability of NNs to recognize
the Gauge Symmetry. In order to use all these
tools, we first need to transform our set of in-
teractions in images to be scanned by the NN.

The simplest solu-
tion is illustrated
in the figure,
where the original
spins of the lattice
are shown as red
dots as a guide
for the eye. In our
new image, the
pixels in between
two spins are
black (white) if

the interaction is ferromagnetic (antiferromag-
netic). The rest of useless pixels are fixed to
zero (grey) and are equal for all the samples.

Transformations and training set

We want to feed the DNN with two samples (A) and (B), and get as output if they are or not on
the same gauge orbit. With this goal, the DNN is trained with a set of Ntrain couples. Beyond the
simplicity of this test, most of the DNN tested fail to infer the gauge symmetry (they only find
trivial classifications), unless a “smart” architecture is introduced in the DNN !
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Case 1: S-O(S) and S-S’
This case is easy: the DNN
only needs to compare the

value of a reduced number of
plaquettes. For this, a DNN

with a square (3× 3)
convolutional can succeed

doing it. But this is not
enough to detect more
elaborated symmetry

breaking.

Case 2: S-O(S) and S-Rq(S)
We can force the previous
machine to check all the
plaquettes by comparing

random gauge
transformations of two

samples that differ only by a
few links. Now, the learning

is harder, but the DNN
succeeds to classify this. Yet,

the gauge symmetry is
non-local.

Case 3: Line transformation
The transformation L(S)
leaves all the plaquettes
unaltered but it is not a

gauge transformation. When
dealing with these samples,

the simple convolutional
layer is not able anymore to

properly classify all the
samples. We need to check

long loops.

Final architecture and results
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Classific
ation In order to force the DNN

to learn the gauge sym-
metry in a 2D Edwards-
Anderson model it is neces-
sary to use a proper train-
ing set to enforce the learn-
ing of useful latent features.
A non-gauge transformation
implies breaking at least one
loop in the system, and any
closed loop can be built from
the sum of small local loops,
the plaquettes, and/or large
straight loops, e.g. the verti-

cal/horizontal lines (under periodic boundary conditions). For this reason, we use the following
architecture for the NN: each sample is scanned by a square kernel, a full line (horizontal) kernel
and a vertical one. The image is fed (in parallel) to three different convolutional networks. These
CNN serves as feature detectors before a fully-connected layer performs the classification.


