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Useful text books

e Szabo and Ostlund, Modern Quantum Chemistry, Dover 1996

e Parr and Yang, Density-Functional Theory of Atoms and Molecules,
1994

- Koch and Holthausen, 4 Chemist’s Guide to Density Functional
Theory, 2001

e A. J. Stone, The Theory of Intermolecular Forces, 1997, 2016

» Wikipedia and Google



Final goal: Predict properties and functions
of useful molecules and materials
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GO (an we be accurate efficient
(fast) at the same time ?
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Why we care about | 4y — FW | ?
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Quantum Atomistic Modeling:
“The Base” of a Multiscale Hierarchy
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van der Waals power law exponent

Wire - protein separation (D/nm)
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Ambrosetti, Ferri, DiStasio Jr., and Tkatchenko, Science (2016).




Relativistic Quantum Effects at

Mesoscopic Scales

non-relativistic

relativistic

P. S. Venkataram, J. Hermann, A. Tkatchenko, and A. W. Rodriguez,
Phys. Rev. Lett. 118, 266802 (2017).
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The Schrodinger Equation

For a free particle in free space (vacuum):

(= 502+ V() 9(0,1)) = i 9(r, )

2m




The Schrodinger Equation

For a free particle in free space (vacuum):

NN

L a
- VE+ V() ) [9(r 1)) = ih [¢(r, 1))

Caution: no spin, no relativity, no field-matter interaction (QED), ...

However, for most molecules and materials, this i1s a VERY
good approximation.



The Schrodinger Equation




The Schrodinger Equation




The Schrodinger Equation

Separation of variables:

E R’
S ) + V()




The Schrodinger Equation

The density |¢(r, )|’
(in this case) 1s
time-independent
Al —iEt/h on i
() AH“ wv =1 AHV e and such solution 1s

called a stationary state



The time-independent Schrodinger equation

Hamiltonian

Energy
operator

4

- 7
HY = BV

Wavefunction



The time-independent Schrodinger equation

Hamiltonian Energy
operator

H=T+V / \

Wavefunction



The time-independent Schrodinger equation

Hamiltonian
operator

Wavefunction

EwAHf I's, I'sg, ..., HWT Hw\wv H_mw\wu v



The time-independent Schrodinger equation

Few remarks:

» Wavefunction can be an immensely complex object for N particles

e Wavefunctions are difficult to interpret. Densities (square of the
wavefunction) and other expectations values are typically used for
conceptual insights.

e In classical mechanics: [7,)] = 0. Particle kinetic energies are
additive.

e In quantum mechanics: [7,}] = 0. Kinetic energy 1s non-additive, 1.e.

has a many-body nature. Energy can be generally expressed as an
infinite power series in terms of distances (angles, ...) between
particles.



The time-independent Schrodinger equation

UV = EU

Exact solutions:

* One particle: free particle, particle in a box, harmonic (and some
anharmonic) oscillators, Dirac delta potential, hydrogen atom, H,", .

 Two particles: two non-interacting particles, “harmonium” atom, .

e Three and more particles: non-interacting particles, effective 1D
Hamiltonians (Hubbard model), N harmonic oscillators coupled with
dipole potential, ...

e Most realistic Hamiltonians have no known analytic (or exact
numerical) solution. This leads to a zoo of approximations.



Molecular and solid-state Hamiltonians

Electron

Nucleus 1 Nucleus 2




Molecular and solid-state Hamiltonians
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Separating nuclei and electrons:

Born-Oppenheimer approximation

Nucle1 are much heavier than electrons:
H nucleus 1s ~1800 times heavier than an electron
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Electron-Electron repulsion energy ~ Nucleus-Nucleus repulsion energy



Separating nuclei and electrons:

Born-Oppenheimer approximation

Nucle1 are much heavier than electrons:
H nuclei 1s ~1800 times heavier than an electron

EAHT I's,Is, ..., ”_W\T H_mw\wu Hﬂwu v —
EAHT I's, I'3, VGAHWT Hw\wu Hw\wu v

The wavefunction in 3(N+M) dimensions is split in two
wavefunctions with 3N and 3M dimensions.

Most often, the nuclear degrees of freedom R, are treated classically,
via Newton's equations of motion

For each {R;}, the solution of the electronic Schrodinger equation
provides energies/forces, generating a so-called potential-energy surface (PES)



“Standard” electronic structure

atomistic modeling procedure

Nuclear coordinates given
(experiment or otherwise)

!

Solve H Y = E“\y for the
electronic subsystem

!

Given energies and forces,
or other properties.
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Why is AEi complex? —

Collective many-particle states




Why is AEf complex? —

Collective many-particle states

Hybrid organic/inorganic systems
(CuPc on Ag(100) surface)

— — —

Ry, Ry, Rs. ..)

/




Current state-of-the-art of atomistic modeling

Accuracy, Wavefunction Computational
Reliability, based methods Cost;
and Loss of
Predictive (MP2, RPA, CCSD(D), ) Conceptual
Power Density-functional theory Understanding ?

with (semi)-local and hybrid functionals

Semi-empirical methods
(AM1, PM6, CNDO, tight-binding)

Empirical potentials (“force fields”)
(no explicit electrons)



Variational principle for wavefunctions
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Hartree theory: product wavefunction

U (1,19, ...,1) = &1(11)P2(T2)...0, (1)

n
In general, exact when [ — M \~s
1

Some many-body problems can be reduced to a Hartree-type wavefunction by
using an appropriate coordinate transformation. For example, dipole-coupled

harmonic oscillators.

For electrons, Hartree wavefunction misses their correct Fermionic nature, i.e.
the antisymmetry of the wavefunction to the exchange of two electrons.

U(ry,...,r .. Ty Ty) = —U(ry, ..., Ty o, Ty e, T




Hartree-Fock theory: orbital determinants

$1(r1)  ¢a(r1) ¢3(r1) . Pn(r1)
P1(r2)  Pa(r2)  ¢P3(r2) . Pn(r2)

1 r > (7 r r
7 Asmwv %mwv ﬁm 3) szm 3)

P1(rn) P2(rn) P3(rn) - On(rn)

fH\Em _

Minimize (subject to orbital ortonormalization and constant N):

Eo = (¥p [Hel¥p" ) = (0" [ Te + Voo + Ve—e¥5")



Hartree-Fock theory: Solution

Self-consistent solution: 1nitialize (atomic) orbitals, solve, find new orbatals, .
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Hartree-Fock theory: Remarks

e Captures > 98% of the electronic energy

e The missing energy from the Hartree-Fock solution is called the
electronic correlation energy. The correlation energy 1s negative
(stabilizing) by definition.

e Hartree-Fock 1s the base for so-called post-HF quantum-chemical
approaches, including Moller-Plesset perturbation theory, coupled cluster
theory, configuration interactions, random-phase approximation, HF-based
quantum Monte Carlo, ...

e HF 1s still an effective single-particle theory, amenable to conceptual

analysis and insights:
Fipi = €ipi

N

Fock operator  orbitals  orbital energies



Beyond Hartee-Fock theory:
Taming electron correlation

Small (~1-2%), but fundamental part
e _ Mm L mm of electronic energy. Responsible for
corr — HF van der Waals interactions and cohesion
in a wide range of molecules and materials

Quantum chemistry

Coupled cluster, :
hierarchy

config. interaction

Moller-Plesset PT, RPA

Hartree-Fock theory

Hartree theory



Beyond Hartee-Fock theory:
Taming electron correlation

virtual
spin
orbitals

X2k

300,J-9911BH 1S0d

occupied

config. interaction orbitate

Moller-Plesset PT, RPA
Hartree-Fock theory

Hartree theory

00,-991IeH



Moller-Plesset perturbation theory
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Coupled-cluster theory
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Coupled-cluster theory
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Post-Hartree-Fock methods: Summary

 Electronic exchange and correlation are purely quantum-mechanical
phenomena (absent in classical mechanics)

e Hartree-Fock describes exchange (or antisymmetry of the
wavefunction to exchange of two electrons), but has no correlation

 Electron correlation is difficult to calculate accurately: MP2/3 theory
gets 90% of correlation, CCSD(T) gets 98%.

e MP2 scales as N°, CCSD as N°, CCSD(T) as N’

 CI (in a converged basis) 1s exact, but VERY expensive,
exponentially scaling, and essentially a “dumb” brute force method.

* Some newer methods exploit sparsity in the many-electron
wavefunction or derive model Hamiltonians, hopefully with minimal
empiricism.

* Post HF methods obey the variational principle: Lower energy =
better wavefunction.



Is W absolutely essential ?

Density-functional theory of
nucleo-electronic systems

Accuracy, Wavefunction Computational
Reliability, based methods Cost;
and Loss of
Predictive (MP2, RPA, CCSI(T),.-.) Conceptual
Power Density-functional theory Understanding ?

with (semi)-local and hybrid functionals

Semi-empirical methods
(AM1, PM6, CNDO, tight-binding)

Empirical potentials (“force fields™)
(no explicit electrons)



Density-functional theory (DFT)
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10.

Density-functional theory (DFT)

Title

Self-Consistent Equations Including
Exchange and Correlation Effects
(1965)

Inhomogeneous Electron Gas (1964)

Self-Interaction Correction to Density-
Functional Approximations for Many-
Electron Systems (1981)

Ground State of the Electron Gas by a
Stochastic Method (1980)

Theory of Superconductivity (1957)

Model of Leptons (1967)

Linear Methods in Band Theory (1975)

Effects of Configuration Interaction on
Intensities and Phase Shifts (1961)

Disordered Electronic Systems (1985)

The Electronic Properties of Two-
Dimensional Systems (1982)

Special Points for Brilloun-Zone
Integrations (1976)

Author(s)

W. Kohn, L. J. Sham

P. Honenberg, W. Kohn

J.P. Perdew, Alex Zunger

D. M. Ceperley, B.J. Alder

J. Bardeen, L.N. Cooper, J.R.
Schrieffer

S. Weinberg

O. K. Andersen

U. Fano

P.A. Lee, T.V. Ramakrishnan

T. Ando, A.B. Fowler, F. Stern

H.J. Monkhorst, James D. Pack

kilopapers

N

N

00 DFT
B PBE
B B3LYP




The Hohenberg-Kohn Theorem (1964)
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Density Functional Theory

L 5

The energy of the ground state of a many-

electron system : E, ({R,}) = Min, <®|H|D®>
Hohenberg and Kohn (1964): The functional
n(r)y = n[®] = <®| 2. 3(r-r,) |O>
i

can be inverted, i.e.,

eC.T ', . ... -.Z..v = eT\NAHvH

This implies:

Nw,o AAHNNVV — 7\:5: § L R T\L




Summary of Hohenberg-Kohn
Density-Functional Theory (DET) -- 1964

-- There 1s a one-to-one correspondence between the
oround-state wave function and the many-body
Hamiltonian [or the nuclear potential, v20¢(r)].

-- The many-body Hamiltonian determines everything.

-- There 1s a one-to-one correspondence between
the ground-state electron-density and the ground-
state wave function.



Kohn and Sham (1965):

E,[n| =Tn] + ._~._AH.V_:.?.E.,WH. + EHartreen] 4 FXe[p)

n .
with E EE:%TL = N .T. \ \ T _.\ v%_..~\.w...\
(C T

And 7 [n] the functional of the kinetic energy of non-
interacting electrons. £%¢[n] contains all the unknowns.

At fixed electron number N the variational principle gives
03 Eyn]— p n(r)d’r — N = (

Kohn-Sham
equation

or




Kohn and Sham Cwawv

0 E*¢|n]

Because 7, [n] 1s the mcsgos& of non-interacting particles
we effectively “restrict” the allowed densities to those

that can be written as :
This implies:

Kohn-Sham
equation

v*ii(r) depends on the density that we are seeking.
| N
NJ%TL — Mr,HH A.JQ\,. _lwi Ve 4\\, v
- M\,/HH e, —f ot (r)n(r)d®r




The Kohn-Sham Ansatz

-~ Kohn-Sham (1965) — Replace the original many-
body problem with an independent electron problem
that can be solved!

--  Only the ground state density and the ground state
energy are required to be the same as in the original
many-body problem.

E,n] = Tin] + [ v(e)n(r)d’r + B¢ n] 4 E*¢[n)]

-- Maybe the exact £x¢[n] functional cannot be written as
a closed mathematical expression. Maybe there 1s a
detour similar to that taken for 7,[#]? The challenge 1s
to find useful, approximate xc functionals.



Density-functional theory (DFT): No free lunch

/

Exchange and Correlation
functionals

X Self-interaction error
X Lack of long-range correlation
(van der Waals interactions)

n(r) o p(r)



Van der Waals
interactions

Proteins
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J. Hermann, R. A. DiStasio Jr., and A. Tkatchenko, Chem. Rev. 117, 4714 (2017).



Physicist's Dream: Mapping Electrons to
Quantum Harmonic Oscillators (QHO)

Nucleus (gq)

Harmonic bond (w)

“Electron” (-q,m)

Model proposed by W. L. Bade (1957); and used by B. J. Berne;
A. Donchev; M. W. Cole; G. Martyna; K. Jordan; F. Manby; ..




Physicist's Dream: Mapping Electrons to
Quantum Harmonic Oscillators (QHO)

Nucleus (gq)

Harmonic bond (w)

“Electron” (-q,m)

RY: 1, |
0 — — ~ -1 W\\\?,wAm. — mvw
2m 2 |
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Model proposed by W. L. Bade (1957); and used by B. J. Berne;
A. Donchev; M. W. Cole; G. Martyna; K. Jordan; F. Manby; ..




From Dream to Reality:.

Argon dimer described accurately by two oscillators
 Coupled QHO correlation energy

computed through Diffusion Monte
Carlo (exact for bosons)

{a(0),Cs,Cs} — {m,q.w}
» Exchange and electrostatic energy = @ mwm%wé 7
from Hartree-Fock (HF) -
= il
oh
5
5
- T . i R |
b
o £
. & 1
1 _ 1 _ 1 _ 1 _ 1
3 4 5 6 7 8

Interatomic distance Qwv

HF+cQHO: almost exact binding energy curve (within 3 meV at minimum)
without any specific adjustments.

Fermionic effects in correlation energy kick in only at very short distances.




Modeling Real Materials: DFT+MBD Method

ORI
A. Tkatchenko and Ao = Ao free

Voo Valence electrons
M. Scheffler, \‘/ . projected to oscillators
Phys. Rev. Lett. (2009) ~ ‘/. (Tkatchenko-Scheffler)
@ 9-
Dyson-like
m\ﬁ T, M&me@w short-range
. A. Didtasio Jr., .
R. Car M. Schefflor. @_ooQo&ﬁmE_o
Phys. Rev. Lett. (2012) screening
A. Ambrosetti, Long-range
R. A. Distasio Jr., correlation
A. M. %m&? cner
A. Tkatchenko, ow_oc_m\w\om
J. Chem. Phys. (2014) using SE




From First-Principles Quantum Methods
to Semi-Empirical and Classical Approaches



Coarse-graining QC and DFT

Semi-empirical quantum chemistry
and tight-binding

Accuracy, Wavefunction Computational
Reliability, based methods Cost;
and Loss of
Predictive (MP2, RPA, CCSI(T),.-.) Conceptual
Power Density-functional theory Understanding ?

with (semi)-local and hybrid functionals

Semi-empirical methods
(AM1, PM6, CNDO, tight-binding)

Empirical potentials (“force fields™)
(no explicit electrons)



Semi-empirical quantum chemistry
and tight-binding

Main 1dea:

e Semi-empirical QC: Empirically approximate the most expensive
integrals in Hartree-Fock or correlated calculations.

e Tight-binding: Expand the density to second (or fourth) order. All
integrals become relatively simple and the energy is obtained in a
single diagonalization step.

» Weakness: These methods inherit all the problems of approximate
QC/DFT, 1.e. long-range correlation 1s absent, exchange 1s heavily
approximated.

 Strength: can be applied to 1,000s of atoms




Throwing away electrons

Empirical potentials (“force fields™)

Accuracy, Wavefunction Computational
Reliability, based methods Cost;
and Loss of
Predictive (MP2, RPA, CCSI(T),.-.) Conceptual
Power Density-functional theory Understanding ?

with (semi)-local and hybrid functionals

Semi-empirical methods
(AM1, PM6, CNDO, tight-binding)

Empirical potentials (“force fields™)
(no explicit electrons)



Classical force fields

water
Continuum solvent model

Hydrophobic effect is roughly
proportional to surface area

S N

torsion angle

« =t

—

Distance bond length or 3-atom angle

Source: Wikipedia



Classical force fields with ML

A .
clfnm
cil m
CH R
a || il : R p T |
CH | | il . _
CH | | HH — v N
ci || S z
S £ 50 8
v m —  Degree 18 S
W Bag-of-Bonds = Lennard-Jones _wm
M ri 5 —100 8
o . g 9 w
&) 2-Body Potentials T =
O . I [
Sum over Bonds M 1 X
OO© —200
Dressed Atoms 1.0 1.5 2.0 2.5 3.0 3.5
> Distance [A]
COMPLEXITY

K. Hansen, F. Biegler, ..., K. R. Mueller, and A. Tkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015).



Current state-of-the-art of atomistic modeling

Accuracy, Computational
Reliability, . 50-100 Cost;
and ﬁ\m/\o?:ocosﬁcim [ oss of
o based methods
Predictive Conceptual
Power Density-functional theory { 004 Understanding ?

with (semi)-local and hybrid functionals
atoms

Semi-empirical methods 10,00(
(AM1, PM6, CNDQO, tight-binding) atoms

Empirical potentials (“force fields”)
(no explicit electrons) 100,000 atoms



HU = EU

* Innocent looking, but powerful and hard to solve
equation

* Encodes (almost) all the physics
(+ chemistry and biology) of real materials

* Wide range of useful and powerful approximations

e Can ML techniques enable future breakthroughs in
modeling and understanding nucleoelectronic systems?



Application: Molecular Crystal Structure Prediction

n Jmm | _{fmﬁ
Q Q —> ///\ //\//\// \// or
: BT N
L ) D Oy X

@ Solids composed of molecular moieties — —
. Polymorphs can exhibit

“ completely different

@ Different crystal-packing motifs (polymorphs) possible @ Kinetic stabilities
: @ Solubilities
@ Energy difference between polymorphs ~ 1 - 4 kd/mol C Beneias
L ~1-2% of lattice energy @ Vibrational Spectra (THz)
@ NMR chemical shifts
@ Melting Points
@ Conductivities
@ Refractive Indices
@ Vapor pressure
@ Elastic constants

@ Heat capacities
Q.

@ Held together by intermolecular interactions




Molecular Crystal Structure Prediction (CSP)

with DFT+-MBD
2 X
I
O~ "0
molecular structural
structure formula

IV
i

(Free) energy

___ﬂ\,% %ﬂ. _ﬂ\\fﬁ V

crystal structure generation &= energy ranking



Targets of Cambridge CSP Blind Test 2016

XX___

cm:_m__< flexible molecule,
polymorphic system

o XXVI

|
o_ O OO
OQ (o) Cl

molecule with 4-8 internal
degrees of freedom

IE

= =

multiple partially flexible molecules
as co-crystal

A. M. Reilly et al., Acta Cryst. B72,439 (2016).



Targets of Cambridge CSP Blind Test 2016

XX | XXIV

A. M. Reilly et al., Acta Cryst. B72, 439 (2016).



XXl

Relative lattice energy [kJ/mol/molecule]

Relative lattice energy [kJ/mol/molecule]

PBE+TS PBE+MBD PBE(0)+MBD +F (TS) /

Relative lattice energy [kJ/mol/molecule]

Relative lattice energy [kJ/mol/molecule]

0 0
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Relative stability [kdJ/mol] j

Realistic Drug Molecule

e FOrm A Al Form mv
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J. Hoja, H.-Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio Jr. and A. Tkatchenko, arXiv:1803.07503, 2018.



HU = EU

* Innocent looking, but powerful and hard to solve
equation

* Encodes (almost) all the physics
(+ chemistry and biology) of real materials

* Wide range of useful and powerful approximations

e Can ML techniques enable future breakthroughs in
modeling and understanding nucleoelectronic systems?



