

Bringing Atomistic Modeling in <u>Chemistry and Physics</u> and <u>Machine Learning</u> Together

Alexandre Tkatchenko

Physics and Materials Science (PhyMS), University of Luxembourg

alexandre.tkatchenko@uni.lu

Cargese, August 22, 2018

Useful text books

- Szabo and Ostlund, Modern Quantum Chemistry, Dover 1996
- 1994 • Parr and Yang, Density-Functional Theory of Atoms and Molecules,
- Koch and Holthausen, A Chemist's Guide to Density Functional Theory, 2001
- A. J. Stone, The Theory of Intermolecular Forces, 1997, 2016
- Wikipedia and Google

CFM 56-7 airplane engine

Final goal: Predict properties and functions

of useful molecules and materials

Dream ... Computational Scientist's (Atomistic)

Dream ... Computational Scientist's (Atomistic)

•~)

"The Base" of a Multiscale Hierarchy **Quantum Atomistic Modeling:**

The Schrödinger Equation

For a free particle in free space (vacuum):

 $\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) \left| \psi(\mathbf{r},t) \right\rangle = i\hbar \frac{d}{dt} \left| \psi(\mathbf{r},t) \right\rangle$

The Schrödinger Equation

For a free particle in free space (vacuum):

 $\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) \Big| \psi(\mathbf{r},t) \rangle = i\hbar \frac{d}{dt} |\psi(\mathbf{r},t) \rangle$

Caution: no spin, no relativity, no field-matter interaction (QED), ...

good approximation However, for most molecules and materials, this is a VERY

The Schrödinger Equation

 $\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) \left| \psi(\mathbf{r},t) \right\rangle = i\hbar \frac{d}{dt} \left| \psi(\mathbf{r},t) \right\rangle$

The time-independent Schrödinger equation

The time-independent Schrödinger equation

Few remarks:

- Wavefunction can be an immensely complex object for N particles
- conceptual insights wavefunction) and other expectations values are typically used for Wavefunctions are difficult to interpret. Densities (square of the
- additive • In classical mechanics: [T,V] = 0. Particle kinetic energies are
- particles has a many-body nature. Energy can be generally expressed as an infinite power series in terms of distances (angles, ...) between • In quantum mechanics: $[T,V] \neq 0$. Kinetic energy is non-additive, i.e.

The time-independent Schrödinger equation

Exact solutions:

anharmonic) oscillators, Dirac delta potential, hydrogen atom, H_2^+ , ... • One particle: free particle, particle in a box, harmonic (and some

- Two particles: two non-interacting particles, "harmonium" atom, ...
- dipole potential, ... Hamiltonians (Hubbard model), N harmonic oscillators coupled with Three and more particles: non-interacting particles, effective 1D
- numerical) solution. This leads to a zoo of approximations Most realistic Hamiltonians have no known analytic (or exact

Molecular and solid-state Hamiltonians

For each $\{\mathbf{R}_i\}$, the solution of the electronic Schrödinger equation provides energies/forces, generating a so-called potential-energy surface (PES)

"Standard" electronic structure atomistic modeling procedure

Hartree theory: product wavefunction

$$\Psi^H(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_n)=\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)...\phi_n(\mathbf{r}_n)$$

using an appropriate coordinate transformation. For example, dipole-coupled Some many-body problems can be reduced to a Hartree-type wavefunction by harmonic oscillators.

the antisymmetry of the wavefunction to the exchange of two electrons For electrons, Hartree wavefunction misses their correct *Fermionic* nature, i.e. $\Psi(\mathbf{r}_1,...,\mathbf{r}_i,...,\mathbf{r}_j,...,\mathbf{r}_n) = -\Psi(\mathbf{r}_1,...,\mathbf{r}_j,...,\mathbf{r}_i,...,\mathbf{r}_n)$
		Ψ^{HF}		
	\sqrt{N}		<u> </u>	
$oldsymbol{\phi}_1(oldsymbol{r}_N)$	•••	$\phi_1(r_3)$	$\phi_1(r_2)$	$\phi_1(r_1)$
$\phi_2(r_N)$	•••	$\phi_2(r_3)$	$\phi_2(r_2)$	$\phi_2(r_1)$
$\phi_3(r_N)$	•••	$\phi_3(r_3)$	$\phi_3(r_2)$	$\phi_3(r_1)$
• •	•••	÷	÷	:
$oldsymbol{\phi}_N(oldsymbol{r}_N)$	•••	$oldsymbol{\phi}_N(oldsymbol{r}_3)$	$\phi_N(r_2)$	$\boldsymbol{\phi}_N(\boldsymbol{r}_1)$

 $E_0 = \langle \Psi_0^{\rm HF} | \hat{\mathcal{H}}_{\rm e} | \Psi_0^{\rm HF} \rangle = \langle \Psi_0^{\rm HF} | \hat{T}_{\rm e} + \hat{V}_{\rm n-e} + \hat{V}_{\rm e-e} | \Psi_0^{\rm HF} \rangle$ Minimize (subject to orbital ortonormalization and constant *N*):

Hartree-Fock theory: orbital determinants

Hartree-Fock theory: Solution

Self-consistent solution: initialize (atomic) orbitals, solve, find new orbitals, ...

$$E_{0} = \langle \Psi_{0}^{\text{HF}} | \hat{\mathcal{H}}_{e} | \Psi_{0}^{\text{HF}} \rangle = \langle \Psi_{0}^{\text{HF}} | \hat{T}_{e} + \hat{V}_{n-e} + \hat{V}_{e-e} | \Psi_{0}^{\text{HF}} \rangle$$

$$egin{aligned} &\langle \mathbf{Y}_0^{\mathrm{HF}} | \hat{\mathcal{H}}_{\mathrm{e}} | \mathbf{Y}_0^{\mathrm{HF}}
angle &= \sum_{i=1}^N \left[\int \phi_i^*(m{r}_i) \Big(-rac{1}{2}
abla_i^2 + \hat{V}_{\mathrm{n-e}} \Big) \phi_i(m{r}_i) d^3 m{r}_i
ight] \ &+ rac{1}{2} \sum_{i=1}^N \sum_{i
eq i}^N \int \int \phi_i^*(m{r}_i) \phi_j^*(m{r}_j) rac{1}{|m{r}_i - m{r}_j|} \phi_i(m{r}_i) \phi_j(m{r}_j) d^3 m{r}_i d^3 m{r}_j \end{aligned}$$

$$E_{\text{Hartree}}$$

$$-\frac{1}{2}\sum_{i=1}^{N}\sum_{\substack{i\neq j}}^{N}\int\int \phi_{i}^{*}(\boldsymbol{r}_{j})\phi_{j}^{*}(\boldsymbol{r}_{i})\frac{1}{|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}|}\phi_{i}(\boldsymbol{r}_{i})\phi_{j}(\boldsymbol{r}_{j})d^{3}\boldsymbol{r}_{i}d^{3}\boldsymbol{r}_{j}$$

$$E_{X}$$

Hartree-Fock theory: Kemarks

- Captures > 98% of the electronic energy
- electronic *correlation energy*. The correlation energy is negative (stabilizing) by definition The missing energy from the Hartree-Fock solution is called the
- approaches, including Moller-Plesset perturbation theory, coupled cluster quantum Monte Carlo, ... theory, configuration interactions, random-phase approximation, HF-based Hartree-Fock is the base for so-called post-HF quantum-chemical
- analysis and insights: HF is still an effective single-particle theory, amenable to conceptual

of electronic energy. Responsible for Small ($\sim 1-2\%$), but fundamental part in a wide range of molecules and materials van der Waals interactions and cohesion

Coupled-cluster theory

Coupled-cluster theory

 $=1+\hat{T}_{1}+\left(\hat{T}_{2}+\frac{\hat{T}_{1}^{2}}{2}\right)+\left(\hat{T}_{3}+\hat{T}_{1}\hat{T}_{2}+\frac{\hat{T}_{1}^{3}}{6}\right)$ $\left(\hat{T}_4 + \hat{T}_3\hat{T}_1 + \frac{\hat{T}_2^2}{2} + \frac{\hat{T}_2\hat{T}_1^2}{2} + \frac{\hat{T}_4^4}{48}\right)$

 $E^{\rm CC} = \langle \Psi_0 | e^{-\hat{T}} \hat{\mathcal{H}} e^{\hat{T}} | \Psi_0 \rangle$

Post-Hartree-Fock methods: Summary

<u>phenomena</u> (absent in classical mechanics) Electronic exchange and correlation are purely quantum-mechanical

wavefunction to exchange of two electrons), but has no correlation Hartree-Fock describes exchange (or antisymmetry of the

gets 90% of correlation, CCSD(T) gets 98%. Electron correlation is difficult to calculate accurately: MP2/3 theory

• MP2 scales as N^5 , CCSD as N^6 , CCSD(T) as N^7

exponentially scaling, and essentially a "dumb" brute force method. CI (in a converged basis) is exact, but VERY expensive,

empiricism. <u>wavefunction</u> or derive model Hamiltonians, hopefully with minimal Some newer methods exploit sparsity in the many-electron

better wavefunction. Post HF methods obey the variational principle: Lower energy =

Is W absolutely essential ?

Density-functional theory of nucleo-electronic systems

Density-functional theory (DFT)

 \in $(\overrightarrow{r_1},\overrightarrow{r_2},\overrightarrow{r_3},$ $\vec{r_n}$

UCSB PHOTO SERVICES

n(r)

Or

Density-functional theory (DFT)

	Title	Author(s)
	Self-Consistent Equations Including Exchange and Correlation Effects (1965)	W. Kohn, L. J. Sham
io	Inhomogeneous Electron Gas (1964)	P. Honenberg, W. Kohn
	Self-Interaction Correction to Density- Functional Approximations for Many- Electron Systems (1981)	J.P. Perdew, Alex Zunger
÷	Ground State of the Electron Gas by a Stochastic Method (1980)	D. M. Ceperley, B.J. Alder
<u>.</u>	Theory of Superconductivity (1957)	J. Bardeen, L.N. Cooper, J.R. Schrieffer
	Model of Leptons (1967)	S. Weinberg
	Linear Methods in Band Theory (1975)	O. K. Andersen
<u>,</u>	Effects of Configuration Interaction on Intensities and Phase Shifts (1961)	U. Fano
	Disordered Electronic Systems (1985)	P.A. Lee, T.V. Ramakrishnan
.e	The Electronic Properties of Two- Dimensional Systems (1982)	T. Ando, A.B. Fowler, F. Stern
10.	Special Points for Brilloun-Zone Integrations (1976)	H.J. Monkhorst, James D. Pack

Density Functional Theory

electron system : The energy of the ground state of a many- $E_0\left(\{\mathbf{R}_I\}\right) = \operatorname{Min}_{\Phi} \langle \Phi | H^e | \Phi \rangle$

Hohenberg and Kohn (1964): The functional $n(\mathbf{r}) = n[\Phi] = \langle \Phi | \sum \delta(\mathbf{r} - \mathbf{r}_i) | \Phi \rangle$

can be inverted, *i.e.*,

 $\Phi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \Phi[n(\mathbf{r})]$.

This implies:

 $E_0\left(\{\mathbf{R}_I\}\right) = \operatorname{Min}_{n(\mathbf{r})} E_{\{\mathbf{R}\}}\left[n\right]$

Density-Functional Theory (DFT) -- 1964 Summary of Hohenberg-Kohn

- -- There is a one-to-one correspondence between the ground-state wave function and the many-body Hamiltonian [or the nuclear potential, $v^{\text{nuc}}(\mathbf{r})$].
- The many-body Hamiltonian determines everything.
- There is a one-to-one correspondence between state wave function. the ground-state electron-density and the ground-

interacting electrons.
$$E^{\text{xc}}[n]$$
 contains all the unknowns.
At fixed electron number N the variational principle gives
 $\delta \left\{ E_v[n] - \mu \left(\int n(\mathbf{r}) d^3 \mathbf{r} - N \right) \right\} = 0$
or $\frac{\delta E_v^{[n]}}{\delta_n} = \mu = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + v^{\text{eff}}(\mathbf{r})$ Kohm-Sham
equation

And $T_s[n]$ the functional of the kinetic energy of **non**- $E^{\text{Hartree}}[n] = \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \iint \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r} d^3\mathbf{r}'$

with

Kohn and Sham (1965):

 $E_v[n] = T_s[n] + \int v(\mathbf{r})n(\mathbf{r})d^3\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xc}}[n]$

IS.

Kohn and Sham (1965): that can be written as Because $T_{s}[n]$ is the functional of non-interacting particles we effectively "restrict" the allowed densities to those This implies: v^{eff}(r) depends on the density that we are seeking. $T_s[n]$ $v^{\text{eff}}(\mathbf{r}) = v(\mathbf{r}) + \frac{e^{\mathbf{r}}}{4\pi\varepsilon_0} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}' + \frac{\delta E^{\text{xc}}[n]}{\delta n(\mathbf{r})}$ $-\frac{\hbar^2}{2m}\nabla^2 + v^{\text{eff}}(\mathbf{r}) \Big\} \varphi_i^-(\mathbf{r}) = \epsilon_i \varphi_i^-(\mathbf{r})$ $= \sum_{k=1}^{N} \epsilon_{k} - \int v^{\text{eff}} [n^{\text{in}}](\mathbf{r}) n(\mathbf{r}) d^{3}\mathbf{r}$ $=\sum_{k=1}^{N}\langle\varphi_{\vec{k}}|-\frac{\hbar^{2}}{2m}\nabla^{2}|\varphi_{\vec{k}}\rangle$ $n(\mathbf{r}) = \sum |\varphi|_i(\mathbf{r})|^2$ ĩ Kohn-Sham equation

The Kohn-Sham Ansatz

- body problem with an independent electron problem that can be solved! Kohn-Sham (1965) – Replace the original many-
- Only the ground state density and the ground state many-body problem. energy are required to be the same as in the original
- $E_v[n] = T_s[n] + \int v(\mathbf{r})n(\mathbf{r})d^3\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xc}}[n]$ Maybe the exact $E^{xc}[n]$ functional cannot be written as to find useful, approximate xc functionals. detour similar to that taken for $T_{s}[n]$? The challenge is a closed mathematical expression. Maybe there is a

J. Hermann, R. A. DiStasio Jr., and A. Tkatchenko, Chem. Rev. 117, 4714 (2017).

a

$$-\frac{1}{2\pi} \int_{0}^{\infty} du \operatorname{Tr} \left[(\chi_{\tilde{\lambda}} - \chi_{0})v \right]$$
b

$$-\frac{1}{2\pi} \int_{0}^{\infty} du \sum_{n \geq 1}^{\infty} \frac{1}{n} \operatorname{Tr} \left[(\alpha_{m} \tilde{\mathbf{T}})^{n} \right]$$
c

$$-\frac{1}{2} \sum_{ij}^{n} C_{6,ij} f(R) R^{-6}$$
d

$$-\frac{1}{2} \int_{ij}^{n} dr dr' n(\mathbf{r}) dv(\mathbf{r}, \mathbf{r'}) n(\mathbf{r'})$$
d

$$-\frac{1}{2} \int_{ij}^{n} dr dr' n(\mathbf{r}) dv(\mathbf{r}, \mathbf{r'}) n(\mathbf{r'})$$
The second s

A. Donchev; M. W. Cole; G. Martyna; K. Jordan; F. Manby; ... Model proposed by W. L. Bade (1957); and used by B. J. Berne;

Nucleus (q)

Physicist's Dream: Mapping Electrons to

Quantum Harmonic Oscillators (QHO)

Harmonic bond (w)

Argon dimer described accurately by two oscillators From Dream to Reality:

- **Coupled QHO correlation energy** computed through **Diffusion Monte Carlo** (exact for bosons)
- $\{\alpha(0), C_6, C_8\} \to \{m, q, \omega\}$
- Exchange and electrostatic energy from **Hartree-Fock** (HF)

Fermionic effects in correlation energy kick in only at very short distances.

HF+cQHO: almost exact binding energy curve (within 3 meV at minimum)

without any specific adjustments.

to Semi-Empirical and Classical Approaches **From First-Principles Quantum Methods**

Coarse-graining QC and DFT

Semi-empirical quantum chemistry and tight-binding

Semi-empirical quantum chemistry and tight-binding

Main idea:

integrals in Hartree-Fock or correlated calculations Semi-empirical QC: Empirically approximate the most expensive

single diagonalization step integrals become relatively simple and the energy is obtained in a Tight-binding: Expand the density to second (or fourth) order. All

approximated. QC/DFT, i.e. long-range correlation is absent, exchange is heavily <u>Weakness</u>: These methods inherit all the problems of approximate

Strength: can be applied to 1,000s of atoms

Throwing away electrons

Empirical potentials ("force fields")

Classical force fields with ML

K. Hansen, F. Biegler, ..., K. R. Mueller, and A. Tkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015).

- Innocent looking, but powerful and hard to solve equation
- Encodes (almost) all the physics
- (+ chemistry and biology) of real materials
- Wide range of useful and powerful approximations

modeling and understanding nucleoelectronic systems?

Can ML techniques enable future breakthroughs in

Application: Molecular Crystal Structure Prediction

- Held together by intermolecular interactions
- Different crystal-packing motifs (polymorphs) possible
- Energy difference between polymorphs ~ 1 4 kJ/mol

↓ ~ 1 - 2 % of lattice energy

Organic electronics

Explosives

Polymorphs can exhibit completely different

- Kinetic stabilities
- Solubilities
- Densities
- Vibrational Spectra (THz)
- NMR chemical shifts
 Melting Points
- Melting Points
- Conductivities
 Batractive Indices
- Refractive Indices
- Vapor pressure
- Elastic constants
- Heat capacities
- •

Realistic Drug Molecule

- Innocent looking, but powerful and hard to solve equation
- Encodes (almost) all the physics
- (+ chemistry and biology) of real materials

modeling and understanding nucleoelectronic systems? Can ML techniques enable future breakthroughs in

Wide range of useful and powerful approximations