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Motivation
Successful deep learning architectures employ compositionality (e.g. [14]) and hi-
erarchical representation. These features also underlie natural language: sentences
are composed of words, and sentences have a hierarchical ‘deep’ structure (e.g. Fig
1a). So why do current ML systems struggle with natural language? Here we use
a statistical physics perspective to characterize the emergence of deep structure in
a model of natural language, the Random Language Model (RLM) [8].

Deep structure was formalized by Post and Chomsky with the notion of generative
grammar [10, 4]. A generative grammar is a set of rules, operating by replacement,
such that from an initial start symbol S, one can produce a set of ‘grammatical’
strings, called sentences. The sequence of rule applications is called a derivation.
For example, the grammar {S → SS, S → (S), S → ()} produces all strings of
well-formed parentheses, which constitute the language of the grammar. A simple
derivation in this grammar is S → SS → (S)S → (())S → (())(). In linguistics,
the observable symbols are typically taken to be words, and grammars produce
sentences (Fig 1a) [4, 5].

The complexity of a language is limited by conditions imposed on its grammar,
as described by the Chomsky hierarchy. Here we focus on context-free grammars
(CFGs), whose derivations can be drawn as trees (Fig 1a). CFGs are the lowest
order of the Chomsky hierarchy that support hierarchical structure. We find that
CFGs possess two natural ‘temperature’ scales that control grammar complexity,
one at the surface interface (εs), and another in the tree interior (εd). As either of
these temperatures is lowered, there is a phase transition, which corresponds to
the emergence of nontrivial information propagation. We characterize this phase
transition using results from simulations, and understand its location by a balance
between energy and entropy.

Generative grammars
A generative grammar is defined by an alphabet χ and a set of rules R. The
alphabet has N hidden, ‘non-terminal’ symbols χN , and T observable, ‘terminal’
symbols χT . The most general rule is of the form a1a2 . . . an → b1b2 . . . bm,
where ai ∈ χN , bi ∈ χ = χN ∪χT . In a CFG, the rules are specialized to the form
a1 → b1b2 . . . bm, and we will insist that m ≥ 1, so that there is no ‘empty’ string.
Without loss of generality, any such CFG can be put into Chomsky normal form,
in which case all rules are of the form [9]

a→ b c or a→ A, (1)

where a, b, c ∈ χN and A ∈ χT . Note that we may have b = a, or b = c, or
a = b = c. Any derivation in Chomsky reduced form can be drawn on a binary
tree. We consider CFGs in this form. Beginning from the start symbol S ∈ χN ,
rules are applied until the string contains only observable symbols. Such a string
is called a sentence. The set of all sentences is the language of the grammar. Given
a string of observables S = A1 . . . A` and a grammar G, one can ask whether there
exists a derivation that produces S from the start symbol S; if so, S is said to be
grammatical. To enable continuous learning, we give each rule a non-negative real
valued weight. For CFGs, to every rule of the form a → bc we assign a weight
Mabc, and to every rule of the form a→ A we assign a weight OaA.

Each candidate derivation of a sentence has two different types of degrees of free-
dom. There is the topology T of the tree, namely the identity (terminal or non-
terminal) of each node, as well as the variables, both terminal and non-terminal,
on the nodes. We write ΩT for the set of internal factors, i.e. factors of the form
a → bc, and ∂ΩT for the boundary factors, i.e. those associated to a → A rules.
The number of boundary factors is written `T , which is also the number of leaves.
Since derivations are trees, the number of internal factors is `T − 1. We will write
σ for non-terminal symbols, and o for terminals; these can be enumerated in an
arbitrary way 1, . . . , N and 1, . . . , T , respectively. Given T , we can write σi for
the value of the non-terminal on site i, and similarly oj for the terminal on site j.
The number of σi is 2`T − 1, while the number of oj is `T . We write G for the pair
M,O.

To define a probability measure on parses, it is convenient to factorize it into the
part specifying T , and the remainder. In this way we separate the the tree shape
from the influence of the grammar on variables. For a fixed T the weight of a parse
{σi, ot} is

W ({σi, ot}|T ,G) =
∏
α∈ΩT

Mσα1σα2σα3

∏
α∈∂ΩT

Oσα1oα2, (2)

where each α = (α1, α2, α3) is a factor in the order σα1 → σα2σα3.

This defines a conditional probability measure
on parses

P({σi, ot}|T ,G) =
W ({σi, ot}|T ,G)

Z(T ,G)
(3)

where

Z(T ,G) =
∑
{σi,ot}

W ({σi, ot}|T ,G) (4)

All parses have S at the root node. For sim-
plicity, in this work we consider as a model
for the tree topology probability P(T |G) =

Wtree/Ztree withWtree(T ) = p|∂ΩT |(1−p)|ΩT |,
where p is the emission probability, the prob-
ability that a hidden node becomes an observ-
able node. p controls the size of trees; we
will choose it such that the tree size distribu-
tion is cutoff above a length ξ = 1000 (for de-
tails see [8]). A model with weights of the
form (2) is called a weighted CFG (WCFG).
We will scale M and O such that their median
values are the corresponding uniform proba-
bilities, M = 1/N2 and O = 1/T . (In [8]
we show that our results are robust in a model
with strict normalization of weights).

Random Language Model
What is an appropriate measure on grammars? If grammar weights are the ac-
cumulation of many small, independent multiplicative effects, then they will lead
to a lognormal distribution. Define deep and surface sparsities as, respectively,
sd = 1

N 3

∑
a,b,c

∣∣logMabc/M
∣∣2 , ss = 1

NT

∑
a,B

∣∣logOaB/O
∣∣2, A lognormal dis-

tribution of grammar weights is PG(M,O) ≡ Z−1
G J e−εdsde−εsss where J =

e−
∑

a,b,c logMabc−
∑

a,B logOaB. We define the RLM as the ensemble of grammars
drawn from this distribution.

The Lagrange multipliers εd and εs satisfy sd = N3/(2εd), ss = NT/(2εs). When
εd →∞, sd → 0, which is the value corresponding to a completely uniform deep
grammar, that is, when for a non-terminal a, all rules a→ bc have the same proba-
bility 1/N2. This is clearly the limit in which the grammar carries no information.
As εd is lowered, the deep sparsity increases, and the grammar carries more in-
formation. Thus εd plays the role of temperature; we will refer to it as the deep
temperature. Similarly, εs controls information transmission at the surface.

We sampled 7200 distinct grammars from the RLM at T = 27, εs/(NT ) = 0.01
and varying N and εd. Since εs is small, there is already simple structure at the
surface; we explore how deep structure emerges as N and εd are varied (see [8]) 1.

The information content of a grammar G is naturally encoded by the Shannon
entropy rate of observed strings, Ss(G) = 〈log 1/P(o|G)〉. For CFGs we can also
consider the entropy rate of deep configurations, Sd(G) = 〈log 1/P(σ|G)〉. In
both cases the ensemble average is taken with the actual probability of occurrence,
P(o|G) for Ss, and P(σ|G) for Sd. The grammar averages Ss and Sd are shown in
Fig. 1bc.
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Fig. 1. (a) Illustrative derivation tree. (b,c) Shannon entropy of random CFGs as functions of ε̃d = εd/N
3. (b) Entropy of

hidden configurations. (c) Entropy of observed strings. The constant value for εd > ε∗ depends on the surface temperature
εs. Bars indicate 20th and 80th percentiles, indicating the variation over grammars at each parameter value.
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ε̃d
Fig. 2.(a) Zipf plot of hidden symbols
for N = 40: the frequency of each hid-
den symbol, arranged in decreasing or-
der. Here ε̃d = εd/N

3. (b) Order parame-
ter Q2, with bars indicating 20th and 80th

percentile ranges over grammars at each
parameter value. Inset: same plot in log-
log axes.

Random Language Model (cont’d)
The dependence on εd is striking: for εd & N3/ log2N , both Ss and Sd are flat. In
this regime, Sd ≈ logN , indicating that although configurations strictly follow the
rules of a SCFG, deep configurations are nearly indistinguishable from completely
random configurations. However, at εd = ε∗ ≈ N3/ log2N there is a pronounced
transition, and both entropies begin to drop. This transition corresponds to the
emergence of deep structure.

Fig. 2a shows the Zipf plot of deep structure; the Zipf plot for surface structure is
similar, but less dramatic (see [8]). We see a sharp change at ε∗: for εd > ε∗, the
frequencies of hidden symbols are nearly uniform, while below ε∗, the distribution
is closer to exponential. The permutation symmetry among hidden symbols is thus
spontaneously broken at ε∗.

What is the correct order parameter to describe this transition? For each interior
rule a → bc we can define Qabc(G) = 〈δσα1,a

(
N2δσα2,b

δσα3,c − 1
)
〉, averaged

over all interior vertices α, and averaged over derivations. Here σα1 is the head
symbol at vertex α, and σα2, σα3 are the left and right symbols, respectively. Q
measures patterns in rule application at each branching of a derivation tree. It
is thus an order parameter for deep structure. Upon averaging over grammars in
the absence of any fields, the permutation symmetry must be restored: Qabc =
q0 + δab ql + δac qr + δbc qh + δabδac q∗. As shown in [8], these components show
a transition, but there is significant noise below ε∗, despite there being 120 replicas
at each point. Evidently, Qabc has large fluctuations below ε∗. This suggests a
definition Q2 ≡

∑
a,b,cQ

2
abc, plotted in Fig 2b. The signal is clear: on the large

scale, Q2 has a scaling form Q2 ≈ N3f (εN/ε∗), and is small above ε∗. The
scaling Q2 ∼ N3 suggests that below the transition, all hidden symbols start to
carry information in the deep structure.

Discussion
We have shown that the RLM has a transition to deep structure as εd is lowered.
By a scaling analysis of Z (see [8]), we can understand the transition at εd ≈
ε∗. Fix a sentence of length ` and define the energy of a parse as − logW −
logWtree, to be compared with its entropy S. We find that for εd � ε∗, the
energy of a parse is unimportant, and the grammar is thus irrelevant: the language
produced by the WCFG must then be indistinguishable from random sequences,
as found empirically (Fig1bc). In contrast, for εd� ε∗, the language reflects those
sequences with high intrinsic weight, and their entropy is less important.

Around 6000 languages are spoken around the world [1]; given fractured input,
how does a child come to learn the precise syntax of one of these many languages?
[2] One scenario for learning is the Principles and Parameters theory [3]. This
posits that the child is biologically endowed with a general class of grammars,
the ‘principles,’ and by exposure to one particular language, fixes its syntax by
setting some number of parameters, assumed to be binary. For example, the head-
directionality parameter controls whether a language is head-initial, like English,
in which verbs come before objects, or head-final, like Japanese, in which verbs
come after objects. A vast effort has been devoted to mapping out the possible pa-
rameters of human languages [1, 13]. The richness of the structure has been used
as criticism of the approach [11]: if the child needs to set a huge number of pa-
rameters, then the theory appears at odds with ‘poverty of the stimulus’ arguments
in favor of innate linguistic knowledge.

The RLM can shed some light on this debate2. Following experimental work [15],
we picture the learning process as follows. Initially, the child does not know the
rules of the grammar, so it begins with some small number of hidden symbols and
assigns uniform values to the weights M and O. To learn is to increase the like-
lihood of the grammar by adjusting the weights. New hidden symbols are added
when new data cannot be acceptably parsed. As weights are driven away from uni-
form values, the temperatures εd and εs decrease. Eventually the transition to deep
structure is encountered, and the grammar begins to carry information. A crucial
point is that the child’s environment acts as a field on this likelihood-ascent. As
temperature is lowered, the RLM is expected to spontaneously break any sym-
metries present: for example, a left-right symmetry breaking could correspond to
setting the head directionality parameter.

Although this description is schematic, we insist that the various symmetry-breaking
transitions that could give rise to parameters are already implicit in the definition
of the model, without any detailed additional information needed to be supplied.
If the RLM can be solved, by which we mean that the partition function Z can be
computed, then the series of symmetry-breaking transitions that occur in the pres-
ence of a field can be inferred: thus the structure of the syntax of human languages
could be deduced. This is a tantalizing goal for future work.
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