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Deep Learning Today

History and State of the Art



Supervised learning                

Training a machine by showing examples instead of programming it

When the output is wrong, tweak the parameters of the machine 

PLANE

CAR

Works well for:

Speech→words

Image→categories

Portrait→ name

Photo→caption

Text→topic

….



Deep Learning

Traditional Machine Learning

Trainable 

Classifer

Feature 

Extractor

Deep Learning
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Hand engineered Trainable
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Multi-Layer Neural Nets

Multiple Layers of simple units

Each units computes a weighted sum of its inputs

Weighted sum is passed through a non-linear function

The learning algorithm changes the weights

Weight 

matrix

Ceci est une voiture

ReLU (x )=max (x ,0)

Hidden

Layer



Supervised Machine Learning = Function Optimization

It's like walking in the mountains in a fog 
and following the direction of steepest 
descent to reach the village in the valley

But each sample gives us a noisy 
estimate of the direction. So our path is 
a bit random. 

traffic light:  -1

Function with 

adjustable parameters

Objective

Function Error

Wi←W i−η
∂ L(W , X )

∂W
i

Stochastic Gradient Descent (SGD)



Computing Gradients by Back-Propagation

● A practical Application of Chain Rule

● Backprop for the state gradients:
● dC/dXi-1 = dC/dXi . dXi/dXi-1 
● dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1 

● Backprop for the weight gradients:
● dC/dWi = dC/dXi . dXi/dWi 
● dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi 

Cost

Fn(Xn-1,Wn)

C(X,Y,Θ)

X (input)
Y (desired output)

Fi(Xi-1,Wi)

F1(X0,W1)

Xi-1

Xi

dC/dXi-
1

dC/dXi

dC/
dWn

W
n

dC/dWi

Wi



Hubel & Wiesel's Model of the Architecture of the Visual Cortex

[Hubel & Wiesel 1962]: 

simple cells detect local features

complex cells “pool” the outputs 

of simple cells within a 

retinotopic neighborhood. 

[Fukushima 1982][LeCun 1989, 1998],[Riesenhuber 1999]......

pooling 
subsampling

“Simple cells” “Complex 
cells”

Multiple 
convolutions

[Thorpe & Fabre-Thorpe 2001]



Convolutional Network Architecture [LeCun et al. NIPS 1989]

Inspired by [Hubel & Wiesel 1962] & 
[Fukushima 1982] (Neocognitron): 

simple cells detect local features

complex cells “pool” the outputs of simple 
cells within a retinotopic neighborhood. 

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity



Convolutional Network (LeNet5, vintage 1990) 

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh



ConvNets can recognize multiple objects

All layers are convolutional

Networks performs simultaneous segmentation and recognition



Check Reader (AT&T 1995)

Graph transformer network 
trained to read check amounts.

Trained globally with Negative-
Log-Likelihood loss (MMI).

50% percent correct, 49% reject, 
1% error (detectable later in the 
process).

Fielded in 1996, used in many 
banks in the US and Europe.

Processed an estimated 10% to 
20% of all the checks written in 
the US in the early 2000s.

[LeCun, Bottou, Bengio ICASSP1997]

[LeCun, Bottou, Bengio, Haffner 1998]



DAVE: obstacle avoidance through imitation learning

Human driver data

Image →[convnet]→steering

20 minutes of training data

Motivated the DARPA LAGR project

Fall 2003 project at Net-Scale Technologies (Urs Muller)

[LeCun et al. NIPS 2005] (rejected from RSS 2005). 



Semantic Segmentation with ConvNet for off-Road Driving

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

[Hadsell et al.,  J. of Field Robotics 2009] 

[Sermanet et al.,  J. of Field Robotics 2009] 



LAGR Video



Semantic Segmentation with ConvNets (33 categories)



Driving Cars with Convolutional Nets

MobilEye

NVIDIA



Deep Convolutional Nets for Object Recognition

AlexNet [Krizhevsky et al. NIPS 2012], OverFeat [Sermanet et al. 2013]

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.



Error Rate on ImageNet

Depth inflation

(Figure: Anirudh Koul)



Deep ConvNets (depth inflation)

VGG
[Simonyan 2013]

GoogLeNet
Szegedy 2014]

ResNet 
[He et al. 2015]

DenseNet 
[Huang et al 2017]



Multilayer Architectures == Compositional Structure of Data

Natural is data is compositional => it is efficiently representable hierarchically

Trainable 

Classifer

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Learning from hash tags on 3.5 billion images

Pretraining on 3.5b instagram images with hashtags. Training/test on ImageNet



Mask R-CNN: instance segmentation

[He, Gkioxari, Dollar, Girshick 

 arXiv:1703.06870]

ConvNet produces an object  
mask for each region of 
interest

Combined ventral and dorsal 
pathways



Mask-RCNN Results on COCO dataset

Individual 
objects are 
segmented.



Mask-RCNN Results on COCO dataset

Individual 
objects are 
segmented.



Mask R-CNN Results on COCO test set



Mask R-CNN Results on COCO test set



Real-Time Pose Estimation on Mobile Devices

Maks R-CNN 

running on

Caffe2Go



Detectron: open source vision

https://github.com/facebookresearch/Detectron



DensePose: real-time body pose estimation

[Guler, Neverova, Kokkinos CVPR 2018] http://densepose.org

20 fps on a single GPU



3D Semantic Segmentation with Sparse ConvNets

ShapeNet competition results ArXiv:1710.06104]

Winner:  Submanifold Sparse ConvNet

[Graham & van der Maaten arXiv 1706.01307]

PyTorch: https://github.com/facebookresearch/SparseConvNet



FairSeq for Translation

[Gehring et al. ArXiv:1705.03122]



Applications of ConvNets

Self-driving cars, visual perception

Medical signal and image analysis

Radiology, dermatology, EEG/seizure prediction….

Bioinformatics/genomics

Speech recognition

Language translation

Image restoration/manipulation/style transfer

Robotics, manipulation

Physics 

High-energy physics, astrophysics

New applications appear every day

E.g. environmental protection,…. 



Applications of Deep Learning

Medical image analysis

Self-driving cars

Accessibility

Face recognition

Language translation

Virtual assistants*

Content Understanding for:

Filtering

Selection/ranking

Search

Games

Security, anomaly detection

Diagnosis, prediction

Science!
[Geras 2017]

[Mnih 2015]

[MobilEye]

[Esteva 2017]



3D ConvNets for Prostate Segmentation in MRI

V-Net

[Milletari 2016]

CUMED

[Yu 2017]

PROMISE12 
dataset



NVIDIA Autonomous Driving Demo

In bucolic New Jersey



Spectral Networks: Convolutional Nets on Irregular Graphs

Convolutions are diagonal operators in Fourier space

The Fourier space is the eigenspace of the Laplacian

We can compute graph Laplacians

Review paper: [Bronstein et al. 2016, ArXiv:1611.08097]



ConvNets on Graphs (fixed and data-dependent)

Graphs can represent: Natural 
language, social networks, chemistry, 
physics, communication networks...

[Bresson 2018]



Spectral ConvNets / Graph ConvNets

Regular grid graph

Standard ConvNet

Fixed irregular graph

Spectral ConvNet

Dynamic irregular graph

Graph ConvNet

[Bresson 2018]

IPAM workshop:
http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/



What About (Deep) 

Reinforcement Learning?

It works great … 

…for games and virtual environments



Reinforcement Learning works fine for games

RL works well for games 

Playing Atari games [Mnih 2013], Go [Silver 
2016, Tian 2018], Doom [Tian 2017], StarCraft 
(work in progress at FAIR, DeepMind….)

RL requires too many trials. 

RL often doesn’t really work in the real world



Pure RL requires many, many trials to  learn a task

[Hessel ArXiv:1710.02298]

Median performance on 57 
Atari games relative to 
human performance 
(100%=human)

Most methods require over 
50 million frames to match 
human performance (230 
hours of play)

The best method 
(combination) takes 18 
million frames (83 hours).



Pure RL is hard to use in the real world

Pure RL requires too many 
trials to learn anything

it’s OK in a game

it’s not OK in the real world

RL works in simple virtual 
world that you can run faster 
than real-time on many 
machines in parallel.

Anything you do in the real world can kill you

You can’t run the real world faster than real time



Open Source Projects from FAIR

PyTorch: deep learning framework http://pytorch.org

Many examples and tutorials. Used by many research groups.

FAISS: fast similarity search (C++/CUDA)

ParlAI: training environment for dialog systems (Python)

ELF: distributed reinforcement learning framework

ELF OpenGo: super-human go-playing engine

FastText: text classification, representation, embedding (C++)

FairSeq: neural machine translation with ConvNets, RNN...

Detectron / Mask-R-CNN: complete vision system

DensePose: real-time body pose tracking system

https://github.com/facebookresearch



What are we missing?

To get to “real” AI



What current deep learning methods enables

What we can have

Safer cars, autonomous cars

Better medical image analysis

Personalized medicine

Adequate language translation

Useful but stupid chatbots

Information search, retrieval, filtering

Numerous applications in energy, 
finance, manufacturing, 
environmental protection, commerce, 
law, artistic creation, games,…..

What we cannot have (yet)

Machines with common sense

Intelligent personal assistants

“Smart” chatbots”

Household robots

Agile and dexterous robots

Artificial General Intelligence 
(AGI)



Differentiable Programming:

Marrying Deep Learning

With Reasoning
Neural nets with dynamic, data-dependent structure, 

A program whose gradient is generated 

automatically.



Augmenting Neural Nets with a Memory Module

Recurrent net memory

 Recurrent networks cannot remember things for very long

The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)

LSTM [Hochreiter 1997], registers

Memory networks [Weston et 2014] (FAIR), associative memory

Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)

Neural Turing Machine [Graves 2014], 

Differentiable Neural Computer [Graves 2016]



Dialog through Prediction [Weston et al. 2016]

Mary went to the hallway.

John moved to the bathroom.

Mary travelled to the kitchen.

Where is Mary?     A:playground

No, that's incorrect. 

Where is John?     A:bathroom

Yes, that's right! 

If you can predict this, 
you are most of the way 
to knowing how to answer 
correctly.



Dialog through Prediction [Weston et al. 2016]



Dialog through Prediction [Weston et al. 2016]

M e m o r y  
M o d u l e  

C o n t r o l l e r  
m o d u l e  

I n p u t  

O u t p u t  
P r e d i c t  
R e s p o n s e  t o  

A n s w e r   

I n t e r n a l  s t a t e  
V e c t o r  (i n i t i a l l y :  q u e r y ) 

C a n d id a t e (
A n s w e r s (

M e m o r y  v e c t o r s  

m

m

q

q

Answer 

(action taken)

Tested on WikiMovies.

 Forward Prediction MemNN (FP) with textual rewards perform better than numerical rewards!



EntNet: Entity Recurrent Neural Net

Maintains a current estimate of the state of the world.

Each module is a recurrent net with a “memory”

Each input event causes some of the memory cells to get updated
“Tracking the World State with Recurrent Entity Networks”,  

[Henaff, Weston, Szlam, Bordes, LeCun, ICLR 2017]



EntNet is the first model to solve all 20 bAbI tasks

Posted on arXiv in Nov 
2016

Presented at ICLR in 
May 2017

Since then two other 
groups have used 
similar ideas and 
improved the results

DeepMind

Umass Amherst

Posting on arXiv 
accelerates the rate of 
progress of science



Inferring and executing programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/

http://densepose.org/


PyTorch: differentiable programming

Software 2.0:

The operations in a program are only partially specified

They are trainable parameterized modules.

The precise operations are learned from data, only the general structure 
of the program is designed.



How do Humans 

and Animal  Learn?

So quickly



Babies learn how the world works by observation 

Largely by observation, with remarkably little interaction.

Photos courtesy of 
Emmanuel Dupoux



Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]
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Prediction is the essence of Intelligence

We learn models of the world by predicting



Three Types of Learning

Reinforcement Learning

The machine predicts a scalar reward given once in a 
while.

weak feedback

Supervised Learning

The machine predicts a category or a few numbers for 
each input

medium feedback

Self-supervised Predictive Learning

The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

A lot of feedback

PLANE

CAR



How Much Information is the Machine Given during Learning?

“Pure” Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a 
while.

A few bits for some samples

Supervised Learning (icing)

The machine predicts a category or a few numbers 
for each input

Predicting human-supplied data

10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

Millions of bits per sample



Two Big Questions on the way to “Real AI”

How can machines learn as efficiently as humans and animals?

By observation

without supervision

with very little interactions with the world

How can we train machines to plan and act (not just perceive)?

Where inference involves a complex iterative process

Learning predictive forward models of the world under uncertainty

Learning hierarchical representations of the world unsupervised

Enabling long-term planning using the model

Enabling learning in the real world with few interactions



The Next AI Revolution

              THE REVOLUTION THE REVOLUTION 

WILL NOT BE SUPERVISEDWILL NOT BE SUPERVISED

          (nor purely reinforced)(nor purely reinforced)
With thanks

To
Alyosha Efros

http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/


Common Sense is the ability to fill in the blanks

Infer the state of the world from partial information

Infer the future from the past and present

Infer past events from the present state

Filling in the visual field at the retinal blind spot

Filling in occluded images, missing segments in speech

Predicting the state of the world from partial (textual) descriptions

Predicting the consequences of our actions

Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from whatever 
information is available.

That’s what self-supervised predictive learning is

But really, that’s what many people mean by unsupervised learning



Learning Predictive Models 

of the World

Learning to predict, reason, and plan,

Learning Common Sense.



Planning Requires Prediction

To plan ahead, we simulate the world

World

Agent

Percepts

Objective
Cost

Agent State

Actions/

Outputs

Agent
World

Simulator

Actor

Predicted

Percepts

Critic
Predicted 

Cost

Action

Proposals

Inferred

World State

Actor State



Training the Actor with Optimized Action Sequences

1. Find action sequence through optimization

2. Use sequence as target to train the actor

Over time we get a compact policy that requires no run-time optimization

Agent
World

Simulator

Actor

Critic

World

Simulator

Actor

Critic

World

Simulator

Actor

Critic

World

Simulator

Actor

Critic

Perception



Learning Physics (PhysNet)

[Lerer, Gross, Fergus ICML 2016, arxiv:1603.01312]

ConvNet produces object masks that predict the trajectories of falling 
blocks. Blurry predictions when uncertain



The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a 
whole set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State

Of the World



Learning the “Data Manifold”: Energy-Based Approach

Learning an energy function (or contrast function) that takes

Low values on the data manifold

Higher values everywhere else

Y1

Y2



Capturing Dependencies Between Variables 
with an Energy Function

The energy surface is a “contrast function” that takes low values on 
the data manifold, and higher values everywhere else

Special case: energy = negative log density

Example: the samples live in the manifold 

Y1
Y2

Y 2=(Y 1)
2



Energy Function for Data Manifold

Energy Function: Takes low value on data manifold, higher values everywhere else

Push down on the energy of desired outputs. Push up on everything else. 

But how do we choose where to push up?

Plausible futures

       (low energy)

Implausible 
futures

 (high energy)



Transforming Energies into Probabilities (if necessary)

Y

P(Y|W)

Y

E(Y,W)

The energy can be interpreted as an unnormalized negative log density

Gibbs distribution: Probability proportional to exp(-energy)

Beta parameter is akin to an inverse temperature 

Don't compute probabilities unless you absolutely have to

Because the denominator is often intractable



Learning the Energy Function

parameterized energy function E(Y,W)

Make the energy low on the samples

Make the energy higher everywhere else

Making the energy low on the samples is easy

But how do we make it higher everywhere else?



Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant

PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else

Max likelihood (needs tractable partition function or variational approximation)

 3. push down of the energy of data points, push up on chosen locations

 Contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Min Probability Flow

 4. minimize the gradient and maximize the curvature around data points 

score matching

 5. train a dynamical system so that the dynamics goes to the manifold

denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy

Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.

Contracting auto-encoder, saturating auto-encoder



#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant

PCA, K-means, GMM, square ICA...

E (Y )=∥WT
WY−Y∥2

PCA

K-Means,  

Z constrained to 1-of-K code

E (Y )=minz∑i
∥Y−W i Zi∥

2



●#2: push down of the energy of data points, 
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

P(Y)

Y

E(Y)

Maximizing P(Y|W) on training samples

make this big

make this bigmake this small

Minimizing -log P(Y,W) on training samples

make this small



●#2: push down of the energy of data points, 
push up everywhere else

Gradient of the  negative log-likelihood loss for one sample Y:

Pushes down on the

energy of the samples

Pulls up on the

energy of low-energy Y's

Y

Y

E(Y)Gradient descent:



The “Decoder with Restricted Latent Variable” Model

Y’ = Dec( Z)       Z* = argmin || Y – Dec(Z) || + R(Z)

Linear decoder: K-Means, basis pursuit, K-SVD, sparse coding,….

Multilayer/non-linear decoder: GLO [Bojanowski et al. 2017]

D
e

c YY’Z -

Residual 

Error

TargetReconstruction

Latent

Representation

R Sum



#6. use a regularizer that limits 
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse 
Decomposition



Learning Generative 

(Forward) Models

With Latent Variables

http://pytorch.org/
https://github.com/facebookresearch


Generation through Latent Optimization
[Bojanowski, Joulin, Lopez-Paz, Szlam arxiv:1707.05776]

Y’ = Dec( Z)       Z* = argmin || Y – Dec(Z) ||

D
e

c YY’Z -

Residual 

Error

TargetReconstruction

Latent

Representation



Generation through Latent Optimization
[Bojanowski, Joulin, Lopez-Paz, Szlam arxiv:1707.05776]

Original

Reconstr.

D=100

Reconstr

D=512



Generation through Latent Optimization
[Bojanowski, Joulin, Lopez-Paz, Szlam arxiv:1707.05776]

Interpolation

in Z space

Interpolation

in pixels



Convolutional

Sparse Auto-Encoders
[Kavukcuoglu NIPS 2010]

“Learning convolutional feature 

hierarchies for visual recognition”



The “Encoder-Decoder with latent vars” Model

Z* = argmin || Y – Dec(Z) || + R(Z) + || Z – Enc(Y) ||

Linear decoder: Predictive Sparse Decomposition [Kavukcuoglu 2009]

Convolutional decoder [[Kavukcuoglu 2010]

D
e
c YY’Z -

Residual 

Error

TargetReconstruction
Latent

Representation

R Sum

E
n
c

Y Z’ -

Sum



Replace the dot products with dictionary element by convolutions.

Input Y is a full image

Each code component Zk is a feature map (an image)

Each dictionary element is a convolution kernel
Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding



Convolutional Formulation

Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function 



Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.



Energy Functions of Various Methods

encoder

decoder

energy

loss
pull-up

W ' Y

WZ

∥Y−WZ∥2

W eY 

Wd Z

∥Y−WZ∥2

W e Z 

Wd Z

∥Y−WZ∥2

−

WZ

∥Y−WZ∥2

F Y  F Y  F Y  F Y 
dimension dimension sparsity 1-of-N code

PCA 
(1 code unit)

K-Means
(20  code units)

autoencoder
(1 code unit)

sparse coding
(20 code units)

 2 dimensional toy dataset: points on a spiral

 Visualizing the energy surface

black = low energy, white = high energy  



Learning to Perform

Approximate Inference

LISTA



Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + 
code_sparsity
E (Y i ,Z )=∥Y i−Wd Z∥

2+ λ∑
j
∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i− Y∥2

∣z j∣

Wd Z

FEATURES 

∑ j
.

Y→ Ẑ=argminZ E (Y ,Z )
Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION

FACTOR

VARIABLE



ISTA/FISTA: iterative algorithm that converges to optimal sparse 
code

INPUT Y ZW
e sh()

S

+

[Gregor & LeCun, ICML 2010], [A. Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions



Think of the FISTA flow graph as a recurrent neural net where We 
and S are trainable parameters

INPUT Y ZW
e sh()

S

+

Time-Unfold the foo graph for K iterations

Learn the We and S matrices oith “backprop-through-time”

Get the best approximate solution oithin K iterations

Y

Z

W
e

sh()+ S sh()+ S

LISTA: Train We and S matrices 
to give a good approximation quickly



Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
e
c
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n
s
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u
c
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o
n
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o
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LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
e
c
o
n
s
tr

u
c
ti

o
n
 E

rr
o
r

Smallest elements
removed



Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
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c
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n
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u
c
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o
n
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rr
o
r



W
e

()+ S +
W
c

W
d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L
1 Z̄

X

Y

0

()+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder 
(DrSAE)



Image = prototype + sparse sum of “parts” (to move around the 
manifold)

DrSAE Discovers manifold structure of handwritten digits



Error Encoding Networks



Error Encoding Network: 
Forward model that infers actions & unpredictable latent variables

[Henaff, Zhao, LeCun ArXiv:1711.04994]

Y’ = Dec( Enc(X) + Z)     with Z=0 or    Z = Phi(Y-Y’)

E
n

c

D
e

c+ YY’

Z

X -

P
h

i

Residual 
Prediction
Error

TargetPredictionObservation

Action and
unpredictable

0

State



Forward model that infers the action

Trained to predict the position of an object after being poked by a 
robot arm [Agrawal et al.NIPS 2016]

Latent variable contains result of arm movement



Forward model that infers the action

Video: predictions as Z varies



Adversarial Training



Predicting under Uncertainty: Adversarial Training

Invariant prediction: The training samples are merely representatives of a 
whole set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State

Of the World



Y

F(X,Y)
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Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014], 

Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126]
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Adversarial Training: the key to prediction under uncertainty?



DCGAN: “reverse” ConvNet maps random vectors to images

DCGAN:  adversarial training to generate images. 

[Radford, Metz, Chintala 2015]

Input: random numbers;  output: bedrooms.



Faces “invented” by a neural net (from NVIDIA)

From random numbers [Karras et al. ICLR 2018]



Fader Network: Auto-Encoder with two-part code

[Lample, Zeghidour, Usunier, Bordes, Denoyer,  Ranzato arXiv:1706.00409]

Discriminator trains Encoder to remove attribute information Y from code Z

Discriminator trained (supervised) to predict attributes.

Encoder trained to prevent discriminator from predicting attributes

female, brown hair, young
Training data:

images with attributes



Varying Attributes

Young to old and back, male to female and back



Video Prediction with

Adversarial Training

[Mathieu, Couprie, LeCun ICLR 2016] 

arXiv:1511:05440



Multi-Scale ConvNet for Video Prediction

4 to 8 frames input → ConvNet → 1 to 8 frames output

Multi-scale ConvNet, without pooling

If trained with least square: blurry output

Predictor (multiscale ConvNet Encoder-Decoder)



Predictive Unsupervised Learning

Our brains are “prediction machines”

Can we train machines to predict the future?

Some success with “adversarial training” 

[Mathieu, Couprie, LeCun arXiv:1511:05440]

But we are far from a complete solution.



Video Prediction: predicting 5 frames 



Video Prediction in 

Semantic Segmentation Space

[Luc, Neverova, Couprie, Verbeek, 

& LeCun ICCV 2017]



Temporal Predictions of Semantic Segmentations

Predictions a single future frame

CityScape dataset [Cordt et al. CVPR 2016]



Temporal Predictions of Semantic Segmentations

Prediction 9 frames ahead (0.5 seconds)

Auto-regressive model



Temporal Predictions of Semantic Segmentations

Prediction 9 frames ahead (0.5 seconds)

Auto-regressive model



Trained Forward Models

for 

Planning and Learning Skills

[Henaff, Zhao, LeCun ArXiv:1711.04994]

[Henaff, Whitney, LeCun Arxiv:1705.07177]



Error Encoding Network: 
Forward model that infers actions & unpredictable latent variables

[Henaff, Zhao, LeCun ArXiv:1711.04994]

Y’ = Dec( Enc(X) + Z)     with Z=0 or    Z = Phi(Y-Y’)
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Grid world with forward model

Grid world



Spaceship control

Planet with gravity, targets,

Ship with orientable thruster



Reversible Recurrent Nets



Approximating a unitary matrix with a product of Givens transforms

“Linearithmic” approximations of unitary matrices



Linearithmic Hessian Matrix Learning (with SGD)

Least square with x a random vector, and y the “real” product Hx



Linearithmic Hessian Matrix Learning (with SGD)

Decompose the diagonalized Hessian H=QDQ'

Decompose each Q into n.log n/2 elementary 2D rotations

2D rotations are organized on an FFT-like graph

Product of log n sets of n/2 elementary 2D rotations on disjoint pairs of 
variables

View the product Hx as a linear multilayer net.

Minimize a least square error between the products of a set vectors 
by the real hessian y=Hx, and the product of the same vector by the 
approximate hessian QDQ'x

Train that with SGD, using backprop to compute the gradient through QDQ'



Linearithmic Hessian Matrix Learning (with SGD)

Learning a random covariance matrix, dimension 64.

Average angle between random vectors multiplied by the real matrix and 
multiplied by the approximation: 35 degrees.



Linearithmic Hessian

Learning with linearithmic hessian

Lest square to solve:

u is parameter

Grad l is gradient 



RNN parameterized with linearithmic unitary transforms

[Jing, Shen, Dubček, Peurifoy, Skirlo, LeCun, Tegmark, Soljačić ICML 2017  arXiv:1612.05231]

Predicting the next 
pixel on MNIST



The Future Impact of AI



Technology drives & motivates Science (and vice versa)

Science drives technology, but technology also drives science

Sciences are born from the study of technological artifacts

Telescope → optics

Steam engine → thermodynamics

Airplane → aerodynamics

Calculators → computer science

Telecommunication → information theory

What is the equivalent of thermodynamics for intelligence?

Are there underlying principles behind artificial and natural intelligence?

Are there simple principles behind learning?

Or is the brain a large collection of “hacks” produced by evolution?



Thank you
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