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Supervised learning . \ |

» Training a machine by showing examples instead of programming it

» When the output is wrong, tweak the parameters of the machine

» Works well for:
» Speech—words

» Image—categoriesy &

» Portrait— name

» Photo—caption

» Text—topic




Deep Learning . \ |

» Traditional Machine Learning

?

Hand engineered Trainable

Trainable

» Deep Learning ‘/’/ \\




Multi-Layer Neural Nets

# Multiple Layers of simple units ReLU(x)Tmax(x,O)
# Each units computes a weighted sum of its inputs —
#l Weighted sum is passed through a non-linear function

# The learning algorithm changes the weights /

Ceci est une voitu
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Supervised Machine Learning = Function Optimization \ |

Weight space

Function with
adjustable parameters'
D @ @ @ @| |[Objective
DO O Function

>

traffic light: -1

# It's like walking in the mountains in a fog "
and following the direction of steepest
descent to reach the village in the valley |

# But each sample gives us a noisy
estimate of the direction. So our path is oL(W.X)
a bit random. W — >
W.€W.—n oW,

#Stochastic Gradient Descent (SGD)




Computing Gradients by Back-Propagation \ |

C(?Y,@) * A practical Application of Chain Rule
Cost
* * * Backprop for the state gradients:
W e dC/dXi-1 = dC/dXi . dXi/dXi-1
10/ =] Fn{Xn-1,Wn) + dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dX-1
dWn gcrdxi§ & x
Wi o « Backprop for the weight gradients:
_ Fi(Xi-1,Wi)
dC/OIW'::| - « dC/dWi = dC/dXi . dXi/dWi
dC/dXi-§ T X1 » dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi

1y _:

::l F-1(X0,W1)

; *X (input) Y (desired output)




Hubel & Wiesel's Model of the Architecture of the Visual Cortex \ |

_ r ~ [Thorpe & Fa
# [Hubel & Wiesel 1962]: i Mgy g

» simple cells detect local features

bre-Thorpe 2001]

Simple visual forms

» complex cells “pool” the outputs

of simple cells within a
Usq Ugq Us2 chss Uca

U / U e To spinal cord
G ' /: ¥ - @§ S4 == Tofingermuscle . _,j'ls:m ms
: ."/ }’E s UC4 3 180-260 ms
Ug : $ HIE
HIEY. W AHIE “Simple cells” “Complex
/ /A : : cells”
layer @M At
contrast }/ / recognition
extraction layer
U masker _ pooling .
M™  layer Multiple subsampling

[Fukushima 1982][LeCun 1989, 1998],[Riesenhuber 1999]...... convolutions



Convolutional Network Architecture [LeCun et al. NIPS 1989] . \ |

/774\ LT Filter Bank +non-linearity
.( g Py -l o4 4 |
A e A | Pooling
e Gy S o W
— Filter Bank +non-linearity

g 3 Pooling

Filter Bank +non-linearity

=~

@inspired by [Hubel & Wiesel 1962] &
[Fukushima 1982] (Neocognitron):

» simple cells detect local features

» complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.



Convolutional Network (LeNet5, vintage 1990) _ \ |

d Filters-tanh — pooling — filters-tanh — pooling — filters-tanh




ConvNets can recognize multiple objects

» All layers are convolutional
» Networks performs simultaneous segmentation and recognition
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1.7 dscrminan oot
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Check Reader (AT&T 1995)

> -

negetiee og - Meibood 43 --..3'2 negeee g Bl Bhood
Porwand | Fo rmasd
» Graph transformer network i | 5 L
. ~a3 " | »
trained to read check amounts.  comctimuprsion otg e 4 3 T Seprewton
» Trained globally with Negative- ¢ ' Grammar

Log-Likelihood loss (MMI). l——‘ e el T 4V
B = gt M
» 50% percent correct, 49% reject, Recagalion Graph QQ’ ER L

1% error (detectable later in the |

process). | e ﬁ:"’?:"'

» Fielded in 1996, used in many Segrertion Graph gy
banks in the US and Europe. -

» Processed an estimated 10% to S Y —
20% of all the checks written in oge e
the US in the early 2000s. vy

» [LeCun, Bottou, Bengio ICASSP1997] SELaT '
[LeCun, Bottou, Bengio, Haffner 1998] ————
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DAVE: obstacle avoidance through imitation learning

» Fall 2003 project at Net-Scale Technologies (Urs Muller) net@SCALE
» [LeCun et al. NIPS 2005] (rejected from RSS 2005).

» Human driver data -
» Image —[convnet]—steering :

» 20 minutes of training data : 7 4
» Motivated the DARPA LAGR project -

STEERING ANGLE =




Semantic Segmentation with ConvNet for off-Road Driving \ |

[Hadsell et al., J. of Field Robotics 2009]
[Sermanet et al., J. of Field Robotics 2009]




LAGR Video : \ |

n NEW YORK UNIVERSITY net > SCALE

100-dimensional
Feature Vector
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Semantic Segmentation with ConvNets (33 categories) . \ |




Driving Cars with Convolutional Nets
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Deep Convolutional Nets for Object Recognition \ |

@ AlexNet [Krizhevsky et al. NIPS 2012], OverFeat [Sermanet et al. 2013]
# 1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox
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Error Rate on ImageNet

» Depth inflation

28.2

A152layers{
e

16.4

11.7 :
| 19 lavets | | 22 1ayer layers

67’

ILSVRC'10 ILSVRC11 ILSVRC'12 ILSVRC13 ILSVRC14 ILSVRC'14 ILSVRC'1S ILSVRC1e

AlexNet VGG GoogleNet ResNet Ensemble

ImageNet Classification top-5 error (%) (Figure: Anirudh Koul)




Deep ConvNets (depth inflation)

VGG
[Simonyan 2013]

GooglLeNet
Szegedy 2014]

uumﬂiaﬂﬂ

ResNet
[He et al. 2015]

DenseNet
[Huang et al 2017]
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Multilayer Architectures == Compositional Structure of Data \ |

# Natural is data is compositional => it is efficiently representable hierarchically

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Learning from hash tags on 3.5 billion images \ |

P Pretraining on 3.5b instagram images with hashtags. Training/test on ImageNet

PROGRESSION OF MODEL USING
LARGER TRAINING SETS OVER TIME TOP 1 ACCURACY IMPROVEMENT
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Mask R-CNN: instance segmentation
» [He, Gkioxari, Dollar, Girshick

arXiv:1703.06870] =
: 7]
» ConvNet produces an object [
= e Il P
mask for each region of Al
interest | Rolwiign| A
= N | ¥ | ',/Itonv=
» Combined ventral and dorsal | 2* | /) 1
pathways | % '
backbone AP APso  AP7s | APs APy AP
MNC [7] ResNet-101-C4 246 443 248 | 47 259 436
FCIS [20] +OHEM ResNet-101-CS-dilated | 29.2 495 - 71 313 500
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6  54.5 - - - -
Mask R-CNN ResNet-101-C4 331 549 348 | 121 356 511
Mask R-CNN ResNet-101-FPN 357 580 378 | 155 381 524
Mask R-CNN ResNeXt-101-FPN 371 600 394 | 169 399 535




» Individual
objects are
segmented.

personi.Q0 )
person1.00
personl.0Q
baseball bat.99

baseballbat 85
baseball bat.98dogl.00,




Mask-RCNN Results on COCO dataset . \ |
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Mask R-CNN Results on COCO test set : \ |




Mask R-CNN Results on COCO test set

Figure 4. More results of Mask R-CNN oa COCO 1est images, using ResNet- 101-FPN and running at 5 fps. with 357 musk AP (Tablke 1)



Real-Time Pose Estimation on Mobile Devices \ |

» Maks R-CNN
running on
Caffe2Go




Detectron: open source vision . \ |

https://github.com/facebookresearch/Detectron




DensePose: real-time body pose estimation \ |

» [Guler, Neverova, Kokkinos CVPR 2018]

DensePose:
Dense Human Pose Estimation In The Wild
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3D Semantic Segmentation with Sparse ConvNets _ \ |

» ShapeNet competition results ArXiv:1710.06104] ‘ o

» Winner: Submanifold Sparse ConvNet
» [Graham & van der Maaten arXiv 1706.01307] i) Rasilas iiad comvoliiioa,

» PyTorch: https://github.com/facebookresearch/SparseConvNet

method mean (b) Valid sparse convolution.
Ay -
! i @ sson 86.00
b PdNet 85.49
DCPN 84.32
PCNN 82.29 nﬂn
PtAdlLoss 77.96

: 5. . d KDTNet 65.80
_ : ;;' .&' DeepPool 42.79
' g NN 77.57

l 19 I 84.74 1) Block with a strided, a valid, and a de-convolution.




Embeddings

FairSeq for Translation
Convolutions
» [Gehring et al. ArXiv:1705.03122] s
a
9
WMT’16 English-Romanian BLEU Units.
Sennrich et al. (2016b) GRU (BPE 90K) 28.1 ,/q‘,y\
ConvS2S (Word 80K) 29 .45 [ [ L
ConvS2S (BPE 40K) 29 .88 Attention
(@)
WMT’14 English-German BLEU »(3) ®
Luong et al. (2015) LSTM (Word 50K) 20.9 l
Kalchbrenner et al. (2016) ByteNet (Char) 23.75 r
Wu et al. (2016) GNMT (Word 80K) 23.12 S -
Whu et al. (2016) GNMT (Word pieces) 24.61 Xt
ConvS2S (BPE 40K) 25.16
WMT’14 English-French BLEU
Wau et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95
Whu et al. (2016) GNMT (Word pieces) + RLL 39.92 ¥: NN Y
ConvS2S (BPE 40K) 40.46 L L JL JL ]

Sie stmmen zu <S>




Applications of ConvNets

» Self-driving cars, visual perception
» Medical sighal and image analysis
» Radiology, dermatology, EEG/seizure prediction....

» Bioinformatics/genomics
» Speech recognition
» Language translation
» Image restoration/manipulation/style transfer
» Robotics, manipulation
» Physics
» High-energy physics, astrophysics
» New applications appear every day
» E.g. environmental protection,....



Applications of Deep Learning
" c[Mnin 2015]Q ©

» Medical image analysis

» Self-driving cars

» Accessibility

» Face recognition

» Language translation

P Virtual assistants*

» Content Understanding for:
» Filtering

» Selection/ranking
» Search

» Games

» Security, anomaly detection
» Diagnosis, prediction

» Science!

& 9

[Esteva 201

Q}]




3D ConvNets for Prostate Segmentation in MRI

7= Lew """ » PROMISE12
BB, TEET S dataset

B 5.5 .
» [Milletari 2016]--*= - ’

» CUMED H
> [Yu 2017] r ‘

o
| Output__

Output

= Leng connecton

ResBlock g




.o'... NVIDIA Autonomous Driving Demo
L o 4

» In bucolic New Jersey

8-Mile Aptonomoqs_ Route




Spectral Networks: Convolutional Nets on lrregular Graphs \ |

# Convolutions are diagonal operators in Fourier space
# The Fourier space is the eigenspace of the Laplacian
#l We can compute graph Laplacians

# Review paper: [Bronstein et al. 2016. ArXiv:1611.080971




ConvNets on Graphs (fixed and data-dependent) \ |

» Graphs can represent: Natural

| i ! "? ;‘%9“& language, social networks, chemistry,
! " z @ physics, communication networks...

Social networks Regulatory networks

Graphs/
Networks

» [Bresson 2018]

Functional networks 3D shapes



Spectral ConvNets / Graph ConvNets

» Regular grid graph
» Standard ConvNet

» Fixed irregular graph @
» Spectral ConvNet

» Dynamic irregular graph
» Graph ConvNet G e
_—

Signal s, on graph G:
Molecule with atoms

[Bresson 2018]
IPAM workshop: X

Part 1:
(Standard) r—
ConvNets Classification
New data
domain
Part 2:
Spectral _’.
ConvNets & Classification
Fixe(i ’graph G
New data
Part 3: domain
Graph —p
ConvNets d Classification

Variables graphs G,

http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/
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What About (Deep)
Reinforcement Learning?

It works great ...
...for games and virtual environments

Artificial Intelligence Research



Reinforcement Learning works fine for games : \ |

» RL works well for games

» Playing Atari games [Mnih 2013], Go [Silver
2016, Tian 2018], Doom [Tian 2017], StarCraft
(work in progress at FAIR, DeepMind....)

» RL requires too many trials.
» RL often doesn’t really work in the real world




Pure RL requires many, many trials to learn a task

\ |

» [Hessel ArXiv:1710.02298]

» Median performance on 57
Atari games relative to
human performance
(100%=human)

» Most methods require over
50 million frames to match
human performance (230
hours of play)

» The best method
(combination) takes 18
million frames (83 hours).

Median human-normalized score

200%

100%

DON
DDQON
Prioritized DDQN

Dueling DDQN

[ A3C

Distributional DOQN
Noisy DQN
Rainbow

AN\ A
I AR

' P

t/ﬁ”’”

",

4"

<R

I ]
100 200

Millions of frames

o



Pure RL is hard to use in the real world

» Pure RL requires too many , % 5 (.f
trials to learn anything J:”h‘ .

.
» it's OK in a game .
» it's not OK in the real world
» RL works in simple virtual
world that you can run faster

than real-time on many
machines in parallel.

» Anything you do in the real world can kill you

» You can’t run the real world faster than real time



Open Source Projects from FAIR

» PyTorch: deep learning framework http://pytorch.org
» Many examples and tutorials. Used by many research groups.

FAISS: fast similarity search (C++/CUDA)
ParlAl: training environment for dialog systems (Python)
ELF: distributed reinforcement learning framework

vvy

ELF OpenGo: super-human go-playing engine

FastText: text classification, representation, embedding (C++)
FairSeq: neural machine translation with ConvNets, RNN...
Detectron / Mask-R-CNN: complete vision system
DensePose: real-time body pose tracking system
https://github.com/facebookresearch

VVVVYYVY
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What are we missing?

To get to “real” Al

Artificial Intelligence Research



What current deep learning methods enables \ |

» What we can have » What we cannot have (yet)
» Safer cars, autonomous cars » Machines with common sense
» Better medical image analysis » Intelligent personal assistants
» Personalized medicine » “Smart” chatbots”
» Adequate language translation » Household robots
» Useful but stupid chatbots » Agile and dexterous robots

» Information search, retrieval, filtering » Artificial General Intelligence

» Numerous applications in energy, (AGI)

finance, manufacturing,
environmental protection, commerce,
law, artistic creation, games,.....
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Differentiable Programming:
Marrying Deep Learning
With Reasoning

Neural nets with dynamic, data-dependent structure,
A program whose gradient is generated
automatically.

Artificial Intelligence Research



Augmenting Neural Nets with a Memory Module \ |

#l Recurrent networks cannot remember things for very long
» The cortex only remember things for 20 seconds

8 We need a “hippocampus” (a separate memory module)
»LSTM [Hochreiter 1997], registers

»Memory networks [Weston et 2014] (FAIR), associative memory

P> Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
P Neural Turing Machine [Graves 2014],

P Differentiable Neural Computer [Graves 2016]




‘,’::.‘ Dialog through Prediction [Weston et al. 2016]

Mary went to the hallway.

John moved to the bathroom.
Mary travelled to the kitchen.
Where is Mary?  A:playground

No, that's incorrect. <

Where is John?  A:bathroom

Yes, that's right!

If you can predict this,
you are most of the way
to knowing how to answer
correctly.




‘.’::.. Dialog through Prediction [Weston et al. 2016]

Figure 2: Human Dialogue from Mechanical Turk (based on WikiMovies) The human teacher’s
dialogue is in black and the bot is in red. We show examples where the bot answers correctly (left)
and incorrectly (right). Real humans provide more variability of language in both questions and
textual feedback than in the simulator setup (cf. Figure 1).

- Sample dialogues with correct answers from the bot:

Who wrote the Linguini Incident ? richard shepard
Richard Shepard is one of the right answers here,
What year did The World Before Her premiere? 2012

Yep! That's when it came out.
Which are the movie genres of Mystery of the 13th Guest? crime
Right, it can also be categorized as a mystery.

Sample dialogues with incorrect answers from the bot:

What are some movies about a supermarket ? supermarket
There were many options and this one was not among them.

Which are the genres of the film Juwanna Mann ? kevin pollak
That is incorrect. Remember the question asked for a genre not name.

Who wrote the story of movie Coraline ? fantasy

That’s a movie genre and not the name of the writer. A better answer would of been Henry Selick
or Neil Gaiman.




‘.’::.‘ Dialog through Prediction [Weston et al. 2016]

Predict .
Answer 0utput < poiionse ¢ Comparing RBI, FP and REINFORCE
(action taken) Answer :
0.7
0.6
: 5 i i 50
M i -
m H N 3 04
: N i v
Memory : ressing i ﬁl i Controller<0.3
Module ! M  module
! L ! 0.2 o-® REINFORCE
i~4 RBI
0.1 —a FP
. Internal state 0 > 10 15 20
Memory vectors  Input Vector (initially: query) Epoch

Tested on WikiMovies.
Forward Prediction MemNN (FP) with textual rewards perform better than numerical rewards!



:’"- EntNet: Entity Recurrent Neural Net
L 4 4

# Maintains a current estimate of the state of the world.
# Each module is a recurrent net with a “memory”

# Each input event causes some of the memory cells to get updated
@ “Tracking the World State with Recurrent Entity Networks”,
[Henaff, Weston, Szlam, Bordes, LeCun, ICLR 2017]

@
o [ |
_.@—
fa z fo
update
® f gate i
@
- ! !
Jo ® fo o
update update
o T = lew I e




..:':.‘ EntNet is the first model to solve all 20 bAbl tasks

< S 2 ..
Task D-NTM MemN2N DNC DMN+ EntNet . Posted on arXiv in Nov
2016
1: 1 supporting fact 4.4 0 0 0 0 .
2: 2 supporting facts 27.5 0.3 04 03 0.1 # Presented at ICLR in
3: 3 supporting facts 71.3 21 1.8 1.1 4.1 May 2017
4: 2 argument relations 0 0 0 0 0 .
5: 3 argument relations 1.7 0.8 0.8 0.5 0.3 ‘ Since then two other
6: yes/no questions 1.5 0.1 0 0 0.2
7: counting 6.0 2.0 06 24 0 groups have used
8: lists/sets 1.7 0.9 0.3 0.0 0.5 similar ideas and
9: simple negation 0.6 0.3 0.2 0.0 0.1 .
10: indefinite knowledge 19.8 0 0.2 0 0.6 Improved the results
11: basic coreference 0 0.0 0 0.0 0.3 i
12: conjunction 6.2 0 0 0.2 0 b Deelend
13: compound coreference 7.5 0 0 0 13
14: time reasoning 17.5 0.2 0.4 0.2 0 » Umass Amherst
15: basic deduction 0 0 0 0 0 Posti Xi
16: basic induction 49.6 51.8 55.1 453 0.2 8 Posting on arXiv
:g: positional reasoning (1)3 ;83.6 (l)?.éO 421% 32 accelerates the rate of
: size reasoning 2 v : " Rs .
19: path finding 39.5 2.3 3.9 0.0 2.3 progress of science
20: agent’s motivation 0 0 0 0 0
Failed Tasks (> 5% error): 9 3 2 1 0
Mean Error: 12.8 4.2 3.8 2.8 0.5



Inferring and executing programs for visual reasoning \ |

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/

_ There is a shiny object that is right of the gray metallic cylinder;
Question %00 & gray y
RNN encoder | does it have the same size as the large rubber sphere?

v

decoder RNN Layout
with attention policy

find | find Io relocate B filter Hcompare

Network builder

> yes

Module Network


http://densepose.org/

PyTorch: differentiable programming

» Software 2.0:
» The operations in a program are only partially specified

» They are trainable parameterized modules.

» The precise operations are learned from data, only the general structure
of the program is designed.
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How do Humans
and Animal Learn?

So quickly

Artificial Intelligence Research



Babies learn how the world works by observation

» Largely by observation, with remarkably little interaction.

Photos courtesy of
Emmanuel Dupoux




Early Conceptual Acquisition in Infants [from Emmanuel Dupoux] \ |
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Three Types of Learning

» Reinforcement Learning
» The machine predicts a scalar reward given once in a
while.
» weak feedback

» Supervised Learning

» The machine predicts a category or a few numbers for
each input o ——

» medium feedback

» Self-supervised Predictive Learnin

» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos
» A lot of feedback



How Much Information is the Machine Given during Learning? \ |

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos
P Millions of bits per sample




Two Big Questions on the way to “Real Al” . \ |

» How can machines learn as efficiently as humans and animals?
» By observation

» without supervision
» with very little interactions with the world

» How can we train machines to plan and act (not just perceive)?
» Where inference involves a complex iterative process

» Learning predictive forward models of the world under uncertainty
» Learning hierarchical representations of the world unsupervised

» Enabling long-term planning using the model
» Enabling learning in the real world with few interactions



The Next Al Revolution N \ |

4 With thanks
S To
Alyosha Efros



http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/

Common Sense is the ability to fill in the blanks _ \ |

P Infer the state of the world from partial information
» Infer the future from the past and present
P Infer past events from the present state

Fig. 1. Human retina as seen through an opthalmoscope.

P Filling in the visual field at the retinal blind spot

P Filling in occluded images, missing segments in speech
» Predicting the state of the world from partial (textual) descriptions
P Predicting the consequences of our actions

» Predicting the sequence of actions leading to a result

» Predicting any part of the past, present or future percepts from whatever
information is available.

» That’s what self-supervised predictive learning is
» But really, that’s what many people mean by unsupervised learning



A\

Learning Predictive Models
of the World

Learning to predict, reason, and plan,
Learning Common Sense.

Artificial Intelligence Research



Planning Requires Prediction

» To plan ahead, we simulate the world

— World -—

Agent |
_ — Percepts Actions/
Simulator s
Predicted Inferred Action |, Agent
Percepts World State Proposals
— Actor

lAgent State
*Actor State

ol critic  |—» Predicted —»| Objective [
Cost Cost




Training the Actor with Optimized Action Sequences \ |

» 1. Find action sequence through optimization

» 2. Use sequence as target to train the actor
» Over time we get a compact policy that requires no run-time optimization

Agent
World World World World

Simulator Simulator Simulator Simulator

}Jerceptio /. /. /. /.

—»{ Actor |—» Actor A-I Actor —» Actor |——

Y L y Y

—»| Critic F=—»{ Critic —» Critic —{ Critic pP—>

V V V V




Learning Physics (PhysNet) . \ |

M [Lerer, Gross, Fergus ICML 2016, arxiv:1603.01312]

» ConvNet produces object masks that predict the trajectories of falling
blocks.




The Hard Part: Prediction Under Uncertainty : \ |

» Invariant prediction: The training samples are merely representatives of a
whole set of possible outputs (e.g. a manifold of outputs).

X — C(Y/z)

Percepts V

Hidden State

Of the World) /

—




Learning the “Data Manifold”: Energy-Based Approach \ |

# Learning an energy function (or contrast function) that takes
» Low values on the data manifold

» Higher values everywhere else
v2 4

Y1



'.. Capturing Dependencies Between Variables
0t

with an Energy Function

# The energy surface is a “contrast function” that takes low values on
the data manifold, and higher values everywhere else

®» Special case: energy = negative log density
> : o .
Example: the samples live in the manifold y.=(v,)

; ..'.°__°.-\.-,-_~'} v
G




Energy Function for Data Manifold

P Energy Function: Takes low value on data manifold, higher values everywhere else
» Push down on the energy of desired outputs. Push up on everything else.
» But how do we choose where to push up?

Implausible
futures

(high energy)

Plausible futures
(low energy)




‘,’". Transforming Energies into Probabilities (if necessary)
L 4 o

# The energy can be interpreted as an unnormalized negative log density
# Gibbs distribution: Probability proportional to exp(-energy)
» Beta parameter is akin to an inverse temperature

# Don't compute probabilities unless you absolutely have to
» Because the denominator is often intractable

P(YI‘V) — fy e—BE(y,W)

> Y
AE(Y.W)

E(Y,W) o —log P(Y |W)




‘,’.'. Learning the Energy Function
L o 2

# parameterized energy function E(Y,W)
» Make the energy low on the samples

» Make the energy higher everywhere else
®» Making the energy low on the samples is easy
» But how do we make it higher everywhere else?




‘,’::..Seven Strategies to Shape the Energy Function

» 1. build the machine so that the volume of low energy stuff is constant
» PCA, K-means, GMM, square ICA

P 2. push down of the energy of data points, push up everywhere else
» Max likelihood (needs tractable partition function or variational approximation)

P 3. push down of the energy of data points, push up on chosen locations
» Contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Min Probability Flow

P 4. minimize the gradient and maximize the curvature around data points
» score matching

P 5. train a dynamical system so that the dynamics goes to the manifold
» denoising auto-encoder

P 6. use a regularizer that limits the volume of space that has low energy
» Sparse coding, sparse auto-encoder, PSD

p 7.if E(Y) =||Y - G(Y)||*2, make G(Y) as "constant"” as possible.
» Contracting auto-encoder, saturating auto-encoder



#1. constant volume of low energy

c’:.:'cEner surface for PCA and K-means

# 1. build the machine so that the volume of low energy stuff is constant
» PCA, K-means, GMM, square ICA...

K-Means,
PCA Z constrained to 1-of-K code
E(Y)=|w wy —Y|] E(Y)=min_ 2 ||Y =W, Z,I]




.’,\. #2: push down of the energy of data points,

push up everywhere else
# Max likelihood (requires a tractable partition function)

Maximizing P(Y|W) on training samples
make this big T P(Y) *

e BEXY W) 4 v +
P |W) = fy e—BE(y,W) W M

make this small >

Minimizing -log P(Y,W) on training samples A E(Y) I

1
L(Y,W) = E(Y,W) + 3 log/ e PEWW)
Yy

A ] A

make this small make this blg ?




.’;.. #2: push down of the energy of data points,

push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) OFE(Y,W) NOE(y, W)
oW ow /y PO 5%
Gradient descent: AE(Y)
oL(Y, W ¢
W «— W —n (Y, ) A
OW A A A
Pushes down on the Pulls up on the ' ?Y '
energy of the samples energy of low- energy Y's

OE(Y, W) OFE(y, W)

W o— W i | P(y|W
- T ow L /,y WIW)—5w




.f::.’ The “Decoder with Restricted Latent Variable” Model

» Y’ = Dec(Z) Z* = argmin || Y — Dec(Z) || + R(Z)
» Linear decoder: K-Means, basis pursuit, K-SVD, sparse coding,....

» Multilayer/non-linear decoder: GLO [Bojanowski et al. 2017]

|!|

Latent
Representation e

Residual

Reconstruction Target




'.. #6. use a regularizer that limits
S

the volume of space that has low energ

# Sparse coding, sparse auto-encoder, Predictive Sparse
Decomposition




Learning Generative
(Forward) Models
With Latent Variables



http://pytorch.org/
https://github.com/facebookresearch

.’.'.. Generation through Latent Optimization
L 4 4

[Bojanowski, Joulin, Lopez-Paz, Szlam arxiv:1707.05776]
» Y’ = Dec(Z) Z* = argmin || Y — Dec(Z) ||

A

Residual
Error

— O~

Reconstruction Target

Latent
Representation




.’.'.. Generation through Latent Optimization
ee®e® [Bojanowski, Joulin, Lopez-Paz, Szlam arxiv: 1707 057706]

» Original

» Reconstr.
D=100

» Reconstr
D=512



.‘.'.. Generation through Latent Optimization
L 4 4

[Bojanowski, Joulin, Lopez-Paz, Szlam arxiv:1707.05776]

» Interpolation |
in Z space

» Interpolation
in pixels




Sparse Auto-Encoders

[Kavukcuoglu NIPS 2010]
; “Learning convolutional feature
' hierarchies for visual recognition”




The "Encoder-Decoder with latent vars” Model . \ |

» Z* =argmin || Y — Dec(Z) || + R(Z) + || Z - Enc(Y) ||
» Linear decoder: Predictive Sparse Decomposition [Kavukcuoglu 2009]

» Convolutional decoder [[Kavukcuoglu 2010]

sun] [

2Oz

Latent
Representation

Residual

?



Convolutional Sparse Coding \ |

& Replace the dot products with dictionary element by convolutions.
» Input Y is a full image
» Each code component Zk is a feature map (an image)

» Each dictionary element is a conualuti er
- Regur\ar sparse co |eng E®PMS qu&— ? Wi Zel||? 4+ a > | Zl
k k

@ Convolutional S.C. E(Y,2) =||Y — > Wi x Zi||> +a > | Zx]
k k

_ B ¥
Wk

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]




Convolutional PSD: Encoder with a soft sh() Function \ |

& Convolutional Formulation
» Extend sparse coding from PATCH to IMAGE

L(z,z,D) = —|Iw— ZDk * 25| |3 +ZII2k — fW" x2)||3 + |21

» PATCH based learning » CONVOLUTIONAL learning



Convolutional Sparse Auto-Encoder on Natural Images, \ |

#Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.




‘,’". Energy Functions of Various Methods
| 4 4 J

CA
1 code unit)

# 2 dimensional toy dataset: points on a spiral
# Visualizing the energy surface
® black = low energy, white = high energy

autoencoder sparse coding K-Means
(1 code unit) (20 code units) (20 code units)

energy

loss
pull-up

Yy —wz|?
F(Y)
dimension

|y —wz| |y —wz|]? |1y —wz|]
F(Y) | F(Y), F(Y)
dimension sparsity 1-of-N code




Learning to Perform
Approximate Inference
LISTA




Sparse Modeling: Sparse Coding + Dictionary Learni.nb\ |

[Olshausen & Field 1997]

# Sparse linear reconstruction

# Energy = reconstruction_error + code_prediction_error +
codie_sparsity l_
EYTZ)=IY —w, ZIP+n 2 |z

FACTOR DETERMINISTIC

INPUT FUNCTION

VARIABLE

# Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....
Y->Z=argmin, E(Y ,Z)



Better Idea: Give the “right” structure to the encoder

Lateral Inhibition

Z(t + 1) = Shrinkage, /. [Z(t) — lejF(WdZ(t) — Y)]

L
@ ISTA/FISTA reparameterized:
Z(t + 1) = Shrinkage, ,;, (W)Y +SZ(t)]; We = le; S=1-—

1
L L

@ LISTA (Learned ISTA): learn the We and S matrices to get fast solutions
[Gregor & LeCun, ICML 2010], [A. Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

WIwy



LISTA: Train We and S matrices
to give a good approximation quickly

& Time-Unfold the flow graph for K iterations
& Learn the We and S matrices with “backprop-through-time”

& Get the best approximate solution within K iterations




Learning ISTA (LISTA) vs ISTA/FISTA

CITor

S v,
> -
- x > X %
Yo -
- 1 =
S
+ S
5 %
g *
2 5 L o 24 o
o e - b
@) - @
ke 1 F < FISTA (4%) =
o< || X FISTA (X ® A
23 | @ LISTA (4x)
® LISTA (1x)
1 3 1 1 ) 1 ilct
0 1 2 3 5 7

Number of LISTA or FISTA iterations



LISTA with partial mutual inhibition matrix

Reconstruction Error

cCITor
=
rys .= 2
355 a
=
3} - -
© = o -
2.5} - = “ °
£~
2 - mdim reduction (4x) ° =
® clements removal (4x) & -
® dim reduction (1x) = o
1.5~ ® clements removal (lx) Sma”eSt elements <
| A ds o removed . 4 "

0.01 0.02 0.05 0.1 0.2 0.5 1

Proportion of S matrix elements that are non zero

cf



Learning Coordinate Descent (LcoD): faster than LISTA \ |

Reconstruction Error

CITOr

» CoD (4x)
> CoD((1x)
50 > e LCoD (4x)
@O LCoD (1x)
»
» p -
10 - » >
| o .
5, >
by
J[ 8 x
. S
1 <}
Y . Q
05k . o "
o S
0.2 >
O
A ’ A A . . F itcr
O 2 5 10 20 S0 100 200

Number of LISTA or FISTA iterations



Discriminative Recurrent Sparse Auto-Encoder \ |

ateral  pegoding 210,

IQhibition Filters

(X m D@
/
oans UL DD

Can be repeated

[Rolfe & LeCun ICLR 2013]



DrSAE Discovers manifold structure of handwritten digits \ |

& Imaae = prototvpe + sparse sum of “parts” (to move around the

108 551 [ e 23 [ T 1 1 el [
6 6 6666666666666 6 6

-------.-------
i e S0 Ak a0 A St S S A A A A6 g6 A A6 b A Gl

Al U S gl e el b e w2 b A 2 i R e

1 5 [ [l [ 1 £ O ) 2 2 S
333333333333333332 3 3

-.-----.-------
DD DD DD DD DDEDDDD 5 S5

-.-.--..------—
332322223222223322323% 3% 3






'.. Error Encoding Network:
0‘:“

Forward model that infers actions & unpredictable latent variables

» [Henaff, Zhao, LeCun ArXiv:1711.04994]
» Y’'=Dec(Enc(X)+Z) withZ=0or Z=Phi(Y-Y’)

@—>¢M

g

Action and gescgt_ilf[_al
unpredictable reaiction
\ / Error
Ok : 0~
= o }
i 0
Observation / State \ Prediction Target




.o’.'o Forward model that infers the action
[ o 2 J

» Trained to predict the position of an object after being poked by a
robot arm [Agrawal et al.NIPS 2016]

» Latent variable contains result of arm movement

a) Deterministic Baseline b) Generation 1

¢) Generation 2 d) Generation



‘,'". Forward model that infers the action
L2 2

» Video: predictions as Z varies

g P
o

F“"- oy




Adversarial Training




.o'::o‘ Predicting under Uncertainty: Adversarial Training

» Invariant prediction: The training samples are merely representatives of a
whole set of possible outputs (e.g. a manifold of outputs).

X —|clx, z)
Percepts N7

Hidden State

Of the wma) /




Adversarial Training: the key to prediction under uncertainty? \ |

» Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
» Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126]

Dataset
T(X)

Past:

X

F(X,Y)

Discriminator_,—» F: minimize

lPast: X

Z |Generator
G(X,2)

Discriminator

F(X,Y)

_l—> F: maximize




Adversarial Training: the key to prediction under uncertainty? \ |

» Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
» Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126]

Dataset
T(X)

Past:

X

F(X,Y)

Discriminator_,—» F: minimize

F(X,Y)

lPast: X

A

Z |Generator
G(X,2)

Discriminator

4

F(X,Y)

_l—> F: maximize

F(X,Y)



Adversarial Training: the key to prediction under uncertainty? . \ |

» Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
» Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126]

Dataset
T(X)

l Past:

X

F(X,Y)

Discriminator_,—» F: minimize

F(X,Y)

lPast: X

A

Z |Generator
G(X,2)

Discriminator

F(X,Y)

_l—> F: maximize




DCGAN: “reverse” ConvNet maps random vectors to images : \ |

» DCGAN: adversarial training to generate images.
» [Radford, Metz, Chintala 2015]
» Input: random numbers; output: bedrooms‘b

l" =1 "
J




Faces “invented” by a neural net (from NVIDIA) \ |

» From random numbers [Karras et al. ICLR 2018]




Fader Network: Auto-Encoder with two-part code \ |

» [Lample, Zeghidour, Usunier, Bordes, Denoyer, Ranzato arXiv:1706.00409]
P Discriminator trains Encoder to remove attribute information Y from code Z
» Discriminator trained (supervised) to predict attributes.

» Encoder trained to prevent discriminator from predicting attributes

X > Encoder >z

Training data: _
images with attributes female, brown hair, young |Y¥

Discriminator ———>

>

Decoder [—

>




Varying Attributes

» Young to old and back, male to female and back

Male — Female

Fv_"'l.} |(' - k

Q
'¢]
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Video Prediction with
Adversarial Training

[Mathieu, Couprie, LeCun ICLR 2016]
arXiv:1511:05440

Artificial Intelligence Research



Multi-Scale ConvNet for Video Prediction

» 4 to 8 frames input —» ConvNet — 1 to 8 frames ou
» Multi-scale ConvNet, without pooling
» If trained with least square: blurry output—

Predictor (multiscale ConvNet Encoder-Decoder)

Network at
size k:

G

1 .4
x"/2 H Network at
size k/2:
2 —
k/2




Predictive Unsupervised Learning o \ |

» Our brains are “prediction machines”
» Can we train machines to predict the future?
» Some success with “adversarial training”

» [Mathieu, Couprie, LeCun arXiv:1511:05440]

» But we are far from a complete solution.

:! .
¢.\)




Video Prediction: predicting 5 frames . \ |




Video Prediction In
Semantic Segmentation Space

[Luc, Neverova, Couprie, Verbeek,
& LeCun ICCV 2017]

Artificial Intelligence Research



Temporal Predictions of Semantic Segmentations _ \ |

» Predictions a single future frame BB
» CityScape dataset [Cordt et al. CVPR 2016] Stdyaa| SE7

Method PSNR SSIM IoUGT IoUSEG IoU-MOGT IoU-MO SEG
] | Network
Copy last input 20.6 0.65 494 54.6 434 48.2 at scale k— 1
Warp last input 20.9 0.67 50.4 55.5 44.9 49.8
Model X2X 24.0 0.77 23.0 22.3 12.8 114 ' -' ’
Model S2S — — 58.3 64.9 53.8 59.8
Model S2S-adv. — — 58.3 65.0 53.9 60.2
Model XS2X 24.2 0.77 22.4 22.5 10.8 10.0
Model XS2S — — 58.2 64.6 53.7 59.9
Model XS2XS 24.0 0.76 55.5 61.1 50.7 55.8 l
Network
at scale k

\J Y

2+ Multicerala arrhitartuire af the Q4 madsl th:




Temporal Predictions of Semantic Segmentations _ \ |

» Prediction 9 frames ahead (0.5 seconds)
» Auto-regressive model

Model IoU GT IoU SEG IoU-MO GT
Copy last input 36.9 39.2 26.8
Warp last input 37.5 39.5 27.9
S2S, AR 453 47.2 36.4
S2S-adv, AR 45.1 47.2 37.3
S2S, AR, fine-tune  46.7 49.7 39.3
XS2XS, AR 39.3 40.8 27.4
S28S, batch 42.1 44.2 32.8
XS28S, batch 42.3 44.6 33.1
XS2XS, batch 41.2 43.5 314

AR fine-tune pred. at ¢ + 3 att+9 AR fine-tune pred. at ¢ + 3 att +9



Temporal Predictions of Semantic Segmentations _ \ |

» Prediction 9 frames ahead (0.5 seconds)
» Auto-regressive model




A\

Trained Forward Models
for
Planning and Learning Skills

[Henaff, Zhao, LeCun ArXiv:1711.04994]
[Henaff, Whitney, LeCun Arxiv:1705.07177]

Artificial Intelligence Research



Error Encoding Network: \ |

Forward model that infers actions & unpredictable latent variablese

» [Henaff, Zhao, LeCun ArXiv:1711.04994]
» Y’'=Dec(Enc(X)+Z) withZ=0or Z=Phi(Y-Y’)

@—»ow

2

Action and Resic.iu-al
unpredictable Prediction
\ / Error
W 0
Observation / State \ Prediction Target




Grid world with forward model

» Grid world

8x8 Gridworld
5._—-':_—,_:—:‘-#——"‘
o801
u
3 60
g ~+— GBP
~a MCTS
40{ 1 : .
0 500 1000
Planning time (model passes)
_ 8x8 Gridworld
$i v y
280/ a,"
e
3 .
g 60+ : s GBP
2 + MCTS
4014 . :
0 1 2

Planning time (seconds)

: 16x16 Gridworld
40| =
3. |
g
3 30
g | - GBP
201 —— MCTS

.

0 200 400 600 800

Planning time (model passes) MAP | METHOD Acc. TIME(S) ENvV. STEPS
TRPO* 86.9 < 0.001 -
TRPO (OURS) 82.4 < 0.001 22M
: , &5 MCTS (R=2000) 91.8 2.36 54K
= 6x16 Gridworld Gl GBP (R=40) 94.0  0.03 54K
a0l a . ; DiISTGBP 91.4 < 0.001 54K
o] [ T GBP (NO NOISE) 25.6 0.03 54K
£30{ TRPO* 33.1 <0001 3M
§ A+ s GBP MCTS (R=2000) 39.8 0.90 110K
201 ¢ MCTS | 16y 16 | GBP (R=2000) 66.4 0.51 110K
L, ' DISTGBP 526 < 0.001 110K
00 02 04 06 08 GBP (NO NOISE)  07.8  0.51 110K

Planning time (seconds)




Spaceship control

» Planet with gravity, targets,
» Ship with orientable thruster

C) METHOD  AVERAGE REWARD  TIME(S) ENV. STEPS
RANDOM -62.7 - ()
A2C -19.2 0.01 3.8M
GBP [1.1 0.19 800K

DISTGBP 12.2 (.01 800K







Approximating a unitary matrix with a product of Givens transforms. \ |

» “Linearithmic” approximations of unitary matrices

=

ARRRRRRR

c)

R6. ¢)

[TTTTTTT

b)

Je

-

XXX

Y cos

sin ¢

e sin @

cOs

)



Linearithmic Hessian Matrix Learning (with SGD) \ |

» Least square with x a random vector, and y the “real” product Hx

H=~Qi1Q2- .. Qign)yDQRL(n -- - R QT

L(w,z,yD) = ||QuD.,QITx) — y@||3

Algorithm 1 Hessian matnx leaming

Input: set (27, ¥ for 7 = 1..m
while not converged do
Randomly draw j € 1..m

DL{o.x"2) _y'2))

Compute gradient gz ; = S ea.
Update @ +— @ — agz ;
Normalize all the Givens to project Q5 on O
end while




Linearithmic Hessian Matrix Learning (with SGD) \ |

» Decompose the diagonalized Hessian H=QDQ'
» Decompose each Q into n.log n/2 elementary 2D rotations
» 2D rotations are organized on an FFT-like graph

» Prod = A . ~—

S " ;joint pairs of
varia H =~ Q1Q2 : ng(n) DQ’I@(n) m e g‘Q’{

» View the product Hx as a linear multilayer net.

» Minimize a least square error between the products of a set vectors

by the real hessian y=Hx, and the product of the same vector by the
approximate hessian QDQ'x

L(w, 2z, y) = [|QuD,QLz"Y) — y D3

» Train that with SGD, using backprop to compute the gradient through QDQ'



Linearithmic Hessian Matrix Learning (with SGD) \ |

» Learning a random covariance matrix, dimension 64.

» Average angle between random vectors multiplied by the real matrix and
multiplied by the approximation: 35 degrees.

20 . ' r : -

80

70

00 -

S0

40

30




Linearithmic Hessian

» Learning with linearithmic hessian
» Lest square to solve: Hy, (ws — ws—1) = Vb — Vo, ;€

> uis parameter Algorithm 2 Optimization with lincanthmic Hessian
: - Parameters: Leaming rates o and 7
> Grad | is gradlent Initialize .o such that 5 = J and Qg € Q.
Imtiahze random ug,
Sett =0

while not converged do
Compute V¢
ifr == O then
Sct du = uy — u, .y
St dg = YV, 6 -V,
Update & «— & — .."‘ '*,
Project Q- on Q as in Equation 6
end if =
Setug oy = uy — SH-ZV L E
Update ¢ +- ¢ + 1
end while

Su. dg)




RNN parameterized with linearithmic unitary transforms \ |

} [Jing, Shen, Dubéek, Peurifoy, Skirlo, LeCun, Tegmark, Soljac¢i¢ ICML 2017 arXiv:1612.05231]

Model Time complexity of one  number of parameters Transition matrix
online gradient step in the hidden matrix search space
URNN O(TNlog N) O(N) subspace of U(N)
PURNN O(TN? + N3) O(N?) full space of U(N)
EURNN (tunable style) O(TNL) O(NL) tunable space of U(NV)
EURNN (FFT style) O(TNlog N) O(N log N) subspace of U(N)
Model hidden size  number of  validation test
> g;:;lgﬂnﬁrz?;r"ext (capacity) parameters accuracy  accuracy
LSTM 80 16k 0.908 0.902
URNN 512 16k 0.942 0.933
PURNN 116 16K 0.922 0.921
EURNN (tunable style) 1024 (2) 13.3k 0.940 0.937

EURNN (FFT style) 512 (FFT) 9.0k 0.928 0.925




A\

The Future Impact of Al

Artificial Intelligence Research



Technology drives & motivates Science (and vice versa) \ |

» Science drives technology, but technology also drives science
P Sciences are born from the study of technological artifacts
» Telescope — optics

» Steam engine — thermodynamics

» Airplane — aerodynamics

» Calculators — computer science

» Telecommunication — information theory

» What is the equivalent of thermodynamics for intelligence?
» Are there underlying principles behind artificial and natural intelligence?

» Are there simple principles behind learning?
» Or is the brain a large collection of “hacks” produced by evolution?



A\

Thank you

Artificial Intelligence Research
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