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The Deep Learning revolution



Mimic Biology- Brain like Neurons
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Simple Neural Networks
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Deep Learning: Neural-Nets strike back
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We begin to obtain new theoretical understanding…

 We combine 3 different ingredients: 
– Rethinking Statistical Learning Theory  

• Worse case PAC bounds ! TYPICAL data dependent model free 
bounds… 

• From expressivity/Hypothesis class  !   Input Compression bounds 
– Information Theory (statistical mechanics…) 

• Large scale learning – Typical input patterns 
• ! Concentration of the Mutual Information values 
• ! Huge parameter space - exponentially many optimal solutions  

– Stochastic dynamics of the training process  
• Convergence of SGD  to locally-Gibbs (Max Entropy) weight distribution 
• ! The mechanism of representation compression in Deep Learning 
• ! Convergence times – explains the benefit of the hidden layers
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The match between DL and the Information Bottleneck
Main results: 

• Optimality: The layers converge to the [finite-sample] IB bound 
– DL can achieve optimal (model free, rule dependent) sample complexity-accuracy tradeoff  
– Through the diffusion/noisy phase of the Stochastic Gradient Descent  optimization 
– Which compresses the representation by “forgetting” irrelevant details  

• Benefit of the Hidden Layers  
– The benefit is mostly computational – boosting the compression! 
– The location of the optimal layers is determined by the problem  

• Interpretability  
– Full layers can have clear – problem specific - meaning, NOT single neurons (in 

general)! 
• Design principles 

– DL is good for stochastic, compressible rules. 
– Layers final position is related to critical points of the Information Bottleneck
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Known issues & reservations
Objections to the theory: 

• Information estimation [requires quantization or noise, not scalable? …] 
– Not needed for training, only as a tool for understating! 
– Binning is done with the actual known resolution. It should not affect network performance. 
– Requires finite precision or quantization – CORRECT! 
– Mutual Information values concentrate & become MORE stable the larger the problem! 

• Input Compression/Information loss not necessary [ResNets, RevNets,i-RevNets,…] 
– Compression comes from unit saturation, not seen with RelU’s (Saxe 2018) – WRONG! 
– Indeed, good generalization can be achieved without apparent layer compression.  
– Similar to the classical physics  paradox of reversible microscopic laws & entropy increase… 
– No “forgetting” of non-informative features (really?) 

• Stochastic Gradients not needed [no convergence to local weight Gibbs distribution] 
– Good generalization achieved without stochastic gradients in INFINITE TIMES! How? 
– Convergence to Gibbs (MaxEnt) distribution is only local (in each layer). 
– The benefits of the stochasticity is dynamical (computational), but also in saving training data! 
– There is important INFORMATION in the mini-batch fluctuations! 

• Is the IB bound relevant? 
– It actually gives concreate predictions and interpretation of the layers & weights.  
– May explain biological neural network organization… our ultimate motivation.
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Deep Neural Nets and Information Theory ??

From causal to predictive systems…
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Some Information Theory basics
• The KL-distribution divergence: 

• The Mutual Information: 

• Data Processing Inequality (DPI)    &     Invariance:
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for any two distributions p(x) & q(x) over X:

        D[p(x) ||q(x)]=∑x p(x) log
p(x)
q(x)

≥ 0

for any two random variables, X  ,  Y:
    I (X;Y) = D[p(x, y) || p(x)p(y)] = D[p(x | y) || p(x)]= D[p(y | x) || p(y)]= H(X)−H(X | Y)

for any Markov chain:  X→  Y→ Z:
            I (X;Y) ≥ I (X;Z)

Reparametrization Invariance, for invertible φ,ψ :  
      I (X;Y) = I (φ(X );ψ (Y))
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What do the DNN Layers represent?
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• A Markov chain of 
topologically distinct 
[soft] partitions of the 
input variable X. 

• Successive Refinement 
of Relevant 
Information 

• Individual neurons can 
be easily “scrambled” 
within each layer  

      Data Processing Inequalities:

H (X) ≥ I (X;hi ) ≥ I (X;hi+1) ≥ I (X;hi+2 ) ≥ ...

I (X;Y) ≥ I (hi ;Y) ≥ I (hi+1;Y) ≥ I (hi+2;Y) ≥ ...
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Each layer is characterized by its Encoder & Decoder 
Information 
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Theorem  (Information Plane): 
For large typical X, the sample 
complexity of a DNN is completely 
determined by the encoder 
mutual information, I(X;T), of 
the last hidden layer; the 
accuracy (generalization error) is 
determined by the decoder 
information, I(T;Y), of the last 
hidden layer. 

The complexity of the problem shifts from the decoder to the encoder, across the 
layers… IS18 Tutorial, September 2018 - Tishby
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100 DNN Layers in Info-Plane without averaging 
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• Only 2 numbers per 
layer matter! 

• Is this the general 
picture? 

• Why do the MI values 
concentrate? 

• What do they mean? 

• What governs their 
dynamics?
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The role of stochasticity:   
How do we measure Mutual Information?  

• The representation invariance of the mutual information raises an interesting question.  

• Obviously, the computational complexity of learning is not representation invariant (think about 
learning from encrypted patterns). Thus, Information measures can’t tell the whole story.  

• Our experiments crucially depends on how we estimate information. We consider 3 types of 
estimations: (1) binning the variables. (2) adding noise / stochasticity (3) parametric 
approximations.                            In our experiments we quantized/bin the neuronal output values. 

• All assume compressibity/refineability of the variables. They are not robust to arbitrary invertible 
transformations! 

• The assertion that the layers are invertible transformations of the input is NOT robust to small noise 
and misleading. Binning or assuming stochastic mapping is essential for our information theoretic 
approach. 

• Moreover, the IB is trivial (uninteresting) for completely deterministic rules! I argue that our theory 
predicts that without additional structural information on the patterns, DL can’t work for completely 
deterministic rules, as they can’t be distinguished from random (fully mixing) rules!  
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Rethinking Learning Theory
  “Old” Generalization 
bounds:

New: Input Compression 
bound:
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X

         ε 2 <
log |H

ε
|+ log 1

δ

2m
ε  - generalization error
δ  - confidence
m - number of training examples
H

ε
 - ε-cover of the Hypothesis class 

typically we assume: |Hε |∼ 1
ε

⎛

⎝⎜
⎞

⎠⎟

d

d - the class (VC,...) dimension
... Don't work for Deep Learning!
Higher expressivity - worse bound!
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Rethinking Learning Theory…
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Typicality emerges when the underling pattern 
distribution can be asymptotically expressed as 
a long product of localized conditional 
probabilities.

E.g. Markov Random Fields, Hidden Markov 
Models, pairwise interaction Hamiltonians in 
physics, all common Graphical models, etc. 

In our case it includes images, speech & text, 
long molecular sequences, signals generated by
localized dynamic systems, etc.

What are “large typical” 
patterns?



Concentration of Mutual Information
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Proposition:  
1. Both I(T;X) and I(T;Y), as defined, concentrate, uniformly, under the partition 
typicality 
assumption.  
2. Both can be estimated uniformly well (over the partitions) from a sample of p(X,Y).  
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Rethinking Learning Theory
  “Old” Generalization 
bounds:

New: Input Compression 
bound:
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X
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|∼ 2|X| → 2|Tε |

T
ε
 - ε -partition of the input variable X

Information Theory: |Tε |∼ 2I (Tε ;X )
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... K bits of compression of X are like 

   a factor of  2K  training examples!
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The Information Bottleneck (IB) Method 

(Tishby, Pereira, Bialek, 1999)

• The Information Bottleneck method was born out of  
      the Speech Recognition problem: 

• What are the simplest (efficient) 
representations 

      of the (high entropy) Acoustic Signal that yield       
      good prediction of the (low entropy) 
phonemes ? 

• The idea was to extract (approximate) Minimal- 
Sufficient Statistics – simplest features – of the 
complex signal (sound), that are informative for the 
simpler one (text).  

• This was cast into a simple looking Information 
Theoretic 

      tradeoff between compression and accuracy. 
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The Information Bottleneck (IB) Method 
(Tishby, Pereira, Bialek, 1999)
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The Information Bottleneck optimality bound 
(Tishby, Pereira, Bialek, 1999)
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Rethinking Learning Theory…
  … but we need to guarantee the label homogeneity of the  -partition with 
finite samples. Without additional structural information on the inputs (stability, 
robustness, topology), we must use the stochasticity of the rule and the IB distortion 
measure:   
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Compression loss

Finite sample loss

The ε − partition, T
ε
, is with the empirical distortion

 
    dIB(x,t) = D[pemp(y | x) || p(y | t)]

    as dIB emp
 =I (X;Y)− Î emp(T;Y)

with a finite sample there is another information loss:
 

     I T;Y( )≤ Î emp T;Y( )+O
2 I (T ;X ) Y

m
⎛

⎝
⎜

⎞

⎠
⎟  ,

both should remain small for good generlaization!



• Layers of optimal DNN converge to [a successively refineable approximation of] the optimal finite-sample IB limit 
information-curve 

• Layers must be in “different topological phases” of the IB solutions 
• The DNN encoder & decoder for each layer satisfy the IB self-consistent equations 
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5% - undertrained 45% of inputs 80% - well trained



Layers paths with training/generalization error
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High SNR phase: memorization

Low SNR phase:   
      forgetting

 Fall to flat  
   minima
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High SNR phase: memorization
Low SNR phase:   
      forgetting High SNR phase: 

Linear drift
Low SNR phase:   
      Diffusion

In the noisy phase the weights diffuse and grow like 
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Gradients SNR, Diffusion & Compression – all layers
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The role of the batch size
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Break
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Relevant and Irrelevant local dimensions

• The covariance matrix of the gradients is very 
narrow in the relevant local dimensions and 
very wide in the many other dimensions.
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Relevant 
diffusion 

Irrelevant diffusion  
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Is it the general picture?   Yes!  
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6 layer committee machine
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… and for “Real-world” problems?   Yes!   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MNIST handwriting digit recognition with RelU’s a CNN 
architecture

Single network!15 networks averaged
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Is it the general picture?   Yes!  
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CIFAR 10 object recognition task Non decreasing layer widths – notice last hidden layer



Local weights Gibbs and optimal IB representations
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The benefit of the hidden layers
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More layers take 
much FEWER 
training epochs 
for good 
generalization. 

The optimization 
time depend 
super-linearly 
(exponentially?) 
on the 
compressed 
information, delta 
Ix, for each layer. 
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Relaxation times and the benefit of the hidden layers
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Equilibration of Information Flow through the layers 
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• Fitting larger training data require more information in the hidden 
layers.  

• It is the mutual-information of the last hidden layer, which determines 
generalization (unlike standard hypothesis class bounds)
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Second order phase transitions on the IB curve 
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Information loss 
in cluster split
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The IB bifurcation (phase-transitions) points
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The IB bifurcation (phase-transitions) points
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Bifurcation diagrams in symmetric rule:  
layers diffusion slows down at phase transitions
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Each layer encodes 
the information in 
the IB bifurcation 
from the previous 
layer.
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Summary
• The Information Plane provides a unique visualization of DL  

– Most of the learning time goes to compression 
– Layers are learnt bottom up – and "help" each other 
– The layers converge to special (critical?) points on the IB bound 

• The advantage of the layers is mostly computational  
– Relaxation times are super-linear (exponential?) in the Entropy gap 
– Hidden layers provide intermediate steps and boost convergence time 
– Hidden layers help in avoiding critical slowing down  

• Further directions 
– Exactly solvable DNN models (through symmetry & group theory) 
– New/better learning algorithms & design principles  
– Predictions on the organization of biological layered networks …
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Thank you!


