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Abstract
We consider an extremely simple local rule of deterministic propagation of k tokens in a graph with m edges, called RR

dynamics. We show that it traverses edges periodically in a highly regular manner, with Θ̃(m/k) idle time, for a wide range
of parameters, after an initial grace period. Presented at SODA 2018.

Distributed Token Propagation

Notation
n total number of vertices
m total number of edges
2m total number of arcs

k total number of tokens
Lt(v) # tokens at vertex v in step t
Lt(e) # tokens traversing arc e after step t

RR Dynamics for Token Propagation
Introduced in [PDDK96]. Studied under a variety of names: Round-robin, Rotor-router, Eulerian walker, Ant
walk, Propp machine. Each node v maintains pointerv to a neighbor, following a cyclic permutation along
the outgoing arcs of v.

RR Dynamics:
While there is at least one token at node v,
do:

1. Send one token to pointerv.

2. Set pointerv = next(pointerv).

Comparison to other Schemes
In the limit of a large number of tokens, RR dynamics follows the discrete heat diffusion equation, just like
random walk diffusion.

Lt(v)
Lt(e) Heat diffusion limit (k →∞): E[Lt(e)] =

Lt(v)
deg(v)

RR dynamics can compete with random-
ized approaches when exploring graphs
(cover time measure [DKPU14, KP14])
and when load-balancing [RSW98, DF09,
BKK+15, SYKY16].

RR dynamics is a close cousin of so-
called sandpile dynamics. In highly
regular settings, such as 2-dimensional
grids, it plausibly demonstrates effects
of self-organized criticality.

Fairness & Balancing Properties

Local fairness bound:

|Lt(e)−
Lt(v)

deg(v)
| ≤ 1

Shared by many processes [RSW98, FS09, SS12].

Strong fairness bound (RR only):∣∣∣∣∣∣
∑
t≤T

Lt(e)−
∑
t≤T Lt(v)

deg(v)

∣∣∣∣∣∣ ≤ 1

Idle time
Deterministic token propagation processes are useful beyond load balancing. We look at long-term averaging
properties. Specifically, we are interested in bounding the idle time after some initialization time Tinit.

Definition. Idle time of a token propagation scheme is the smallest value T such that in any consecutive
T steps every edge/arc is traversed at least once.

References
[BKK+15] Petra Berenbrink, Ralf Klasing, Adrian Kosowski, Frederik Mallmann-Trenn, and Przemysław
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Issue: Enforcing Regular & Periodic Behavior

Random-walk type processes tend to behave poorly
w.r.t. idle time.

For example, idle time of a path (with a single token) is
Ω(n2) for the random walk, but Θ(n) for RR dynamics.

Main result

Theorem. For any time t ≥ Tinit = poly(n, log k), the idle time of RR satisfies the following bounds:
• Õ(gcd(k, 2m)mk )

• O(mk ) = O(1) for k ≥ (1
2 + ε)m

• O(Diam · mk )

• Õ(
√
n · mk )

• Õ(
√
k · mk )

• O(mk ) for trees

The RR dynamics has almost-optimal idle time Õ(mk ) when m and k are co-prime.

Techniques

Eulerian circulation

Theorem ([CDG+15]). Recurrent state of RR ⇔
there is a bijection ϕ : ~E → ~E such that

• ϕ(e) always starts where e ends

• Lt+1(ϕ(e)) = Lt(e)

Recurrent state is reached in time poly(n, log k).

The gcd connection

lim
T→∞

∑
t≤T Lt(e)

T
=

k

2m

therefore

# tokens on a cycle
# arcs on a cycle

=
k

2m

#cycles | gcd(k, 2m)

gcd(k, 2m) = 1 =⇒ single cycle

Skewed distances

δ0(e1, e2) = 1

δ1(e, ϕ(e)) = 0

e1

e2

ϕ(e)e

δ∆t(e, e
′) def

= max
t1,t2

∣∣∣∣∣∣
∑

t1≤t≤t2

(
Lt+∆t(e1)− Lt(e′)

)∣∣∣∣∣∣
Self-intersections

e ϕ(e)
ϕx(e)

Definition. x is a self-intersection of the cycle:
for some e, e and ϕx(e) share starting vertex.

Discrepancy parameter δ:

δx
def
= δx(e, e) = δ0(e, ϕx(e))

• δ0 = 0

• δx ≤ 1 for x self-intersections

• δx+y ≤ δx + δy∣∣∣∣∣∣
∑
t≤T

Lt(e)−
k

2m
T

∣∣∣∣∣∣ ≥ max
0≤x<2m

δx Idle time(e) = O
(m
k

)
·max0≤x<2m δx

Additive combinatorics

Sumset:
For A,B ⊆ Z2m, A+B

def
= {a+ b : a ∈ A, b ∈ B}.

Multiplication:
κ · A def

= A + A + . . . + A︸ ︷︷ ︸
κ times

.

X is the set of all self-intersections. What is the smallest κ, such that κ · X = Z2m?

Spectral property

Lemma.

∀f≥1 ∃x∈X (f · x) ∈
[

2

3
m,

4

3
m

] Proof:

Bohr sets

Restating: ∀f≥1 ∃x∈X (f · x) ∈
[

2
3m,

4
3m
]

⇔ Bohr(X , 1/6) = {0}

Theorem. For any A ⊆ Z2m, if
Bohr(A, 1/6) = {0}, then κ · X =
Z2m for some κ = O(log2m).

Proof: [main technical contribution, generalizes
[TV06] Proposition 4.40]

⇓

max
0≤x<2m

δx = O(log2m)


