Ergodic Effects in Token Circulation

Adrian Kosowski Przemystaw Uznanski
Inria Paris ETH Ziirich

adrian.kosowskidinria.fr przemyslaw.uznanski@inf.ethz.ch

&zz/a/- ETH:-urich

Abstract | | Issue: Enforcing Regular & Periodic Behavior
We consider an extremely simple local rule of deterministic propagation of £ tokens in a graph with m edges, called RR

dynamics. We show that it traverses edges periodically in a highly regular manner, with ©(m/k) idle time, for a wide range L R T————
of parameters, after an initial grace period. Presented at SODA 2018. ¢ idle ti yPEP b Y
W.I.l. 1dl€ UIme. @_O_O O_O

.« 4 e . For example, idle time of a path (with a single token) is
Distributed loken Propagation ()(n?) for the random walk, but ©(n) for RR dynamics.

Main result
Theorem. For any time t > Ty = poly(n,logk), the idle time of RR satisfies the following bounds:
e O(gcd(k, 2m)7) e O(yn- )
O=clEmE

e O(Diam - 7°) e O(7) for trees
Notation | s |
, The RR dynamics has almost-optimal idle time O(*’) when m and k are co-prime.
n total number of vertices k total number of tokens
m  total number of edges L(v) # tokens at vertex v in step ¢
2m total number of arcs L(e) # tokens traversing arc e after step ¢

Techniques

RR Dynamics for Token Propagation Eulerian circulation

Introduced in [PDDK96]. Studied under a variety of names: Round-robin, Rotor-router, Eulerian walker, Ant

walk, Propp machine. Each node v maintains pownter, to a neighbor, following a cyclic permutation along
the Qutgoing arcs of v. Theorem ([CDG_FIS])._)RBCML”I”BI’ZZ‘ state Of RR &
there is a bijection ¢ : I/ — E such that

RR Dynamics: o o o o

While there is at least one token at node v,
do: o Lii1(p(e)) = Li(e)

e ©(e) always starts where e ends

1. Send one token to pointer,,. Recurrent state is reached in time poly(n,log k).

2. Set pointer, = next(pointer,,). En 0

Comparison to other Schemes The gcd connection
In the limit of a large number of tokens, RR dynamics follows the discrete heat diffusion equation, just like o <t Lile) K
random walk diffusion. Tlinoo T " om #cycles | ged(k,2m)
therefore
# tokens onacycle  k ged(k,2m)=1 =  single cycle
Heat diffusion limit (k — OO): = # arcs on a Cycle B %
Skewed distances
RR dynamics can compete with random- RR dynamics 1s a close cousin of so- €1
ized approaches when exploring graphs called sandpile dynamics. In highly Soleq, e0) = 1 (6)
(cover time measure [DKPU14, KP14]) regular settings, such as 2-dimensional €
and when load-balancing [RSW98, DF09, grids, it plausibly demonstrates effects o1(e, ple)) =0 €9
BKK ™15, SYKY16]. of self-organized criticality.
Fairness & Balancing Properties dnele, €)= max (Lt+At(€1) — Lt(el))
_ U h<t<ty
. \, J
Local fairness bound: Strong fairness bound (RR only):
Ly(v)
| Li(e) — deg(v)‘ =1 S 2_t<T Lt(v) Self-intersections
| ‘ t(e) — <1
t<T deg(v) granitiiting,, ey,
Shared by many processes [RSWI8, FS09, SS12]. — 2

Definition. x is a self-intersection of the cycle:

: for some e, e and p”(e) share starting vertex.

Idle time

Deterministic token propagation processes are useful beyond load balancing. We look at long-term averaging

, , , | . o e Discrepancy parameter : ® 0y =0
properties. Specifically, we are interested in bounding the idle time after some initialization time I paney p

5 s 5 . e ), <1 for z self-intersections
2~ %ale,€) = e & 16) ® 0p1y < Oy + 0y

Definition. Idle time of a token propagation scheme is the smallest value I" such that in any consecutive
1" steps every edge/arc is traversed at least once.

k :
Z Li(e) — %T > p s O Idle time(e) = O () - maxo<,<om 0z

t<T
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Spectral property

Lemma.

2 4
Vi1 Jeex (fr2) € [gmagm]

Restating: V1 Tex (f 7)€ @mgm] & Bohr(X,1/6) = {0}

Theorem. For any A C Liom,
Bohr(A,1/6) = {0}, then v - X =
Lo, for some k = O(log” m).

Proof: [main technical contribution, generalizes
[TVO06] Proposition 4.40]




