

Motivation

Several interesting problems (MaxCut, little Grothendieck problem, ground states of Ising and Sherrington-Kirkpatrick models) can be written as optimization of quadratic forms over the hypercube, or optimization of linear functions over the *cut polytope*:

 $\mathsf{M}^{\mathsf{HC}}(oldsymbol{W}) = \max_{oldsymbol{x} \in \{\pm 1\}^N} oldsymbol{x}^ op oldsymbol{W} oldsymbol{x} = \max_{oldsymbol{E} \in \mathsf{CUT}^N} \langle oldsymbol{E}, oldsymbol{W}
angle,$

 $\mathsf{CUT}^N = \mathsf{conv}(\{xx^\top : x \in \{\pm 1\}^N\})$ = degree 2 moments of distributions over $\{\pm 1\}^N$.

Sum-of-squares (SOS) SDP relaxations of degree 2d give efficiently computable upper bounds on $M^{HC}(W)$ by optimizing over *pseudomoment matrices* $PM_{2d\rightarrow 2}^N \supseteq CUT^N$ or the associated *pseudoexpectations* $PE_{2d}^N \supseteq \{\mathbb{E}_{\mu} : \mu \in \mathcal{M}^1(\{\pm 1\}^N)\}$:

 $\mathsf{SOS}_{2d}^{\mathsf{HC}}(W) = \max_{E \in \mathsf{PM}_{2d \to 2}^N} \langle E, W \rangle = \max_{\tilde{\mathbb{E}} \in \mathsf{PE}_{2d}^N} \tilde{\mathbb{E}} \left[x^\top W x \right].$

To measure the computational difficulty of $M^{HC}(W)$, we look at the quality of SOS relaxations as the degree grows.

Factorizing Pseudomoments

It can be useful to describe a pseudomoment matrix as a Gram matrix (for rounding, rank-constrained numerics, and theoretical arguments). For degree 2, this is simple:

$$\mathsf{PM}_{2\to 2}^N = \left\{ \boldsymbol{E} \in \mathbb{R}^{N \times N} : \boldsymbol{E} \succeq \mathbf{0}, \mathsf{diag}(\boldsymbol{E}) = \mathbf{1} \right\} \\ = \left\{ \boldsymbol{E} \in \mathbb{R}^{N \times N} : E_{ij} = \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle \text{ where } \boldsymbol{v}_i \in \mathbb{S}^{r-1} \right\}.$$

We give a more subtle answer for degree 4.

Definition. $\mathcal{B}(N, r)$ is the set of **positive semidefinite** $\mathbb{R}^{rN \times rN}$ block matrices where every diagonal block is I_{γ} and every off-diagonal block is symmetric:

Theorem: Gram Matrix Description of SOS^{HC} Feasibility

 $E = (\langle v_i, v_j \rangle)_{i,j=1}^N \in \mathsf{PM}_{4\to 2}^N$ with $v_i \in \mathbb{S}^{r-1}$ if and only if there exists $X \in \mathcal{B}(N, r)$ with $v^{\mathsf{T}} X v = N^2$, where v is the concatenation of the v_i .

> $\|X\| \leq N$ when $X \in \mathcal{B}(N, r)$, so v is a top eigenvector of X.

TIGHT FRAMES, QUANTUM INFORMATION, AND DEGREE 4 SUM-OF-SQUARES Dmitriy (Tim) Kunisky, joint with Afonso Bandeira

Separability and Partial Transposition

Some simple constructions of a witness X are guaranteed to produce "trivial" pseudomoment matrices, those arising from true probability distributions.

Proposition: Low-Rank and Separable Feasibility Witnesses are Trivial

If $E = (\langle v_i, v_j \rangle)_{i,i=1}^N$ with $v_i \in \mathbb{S}^{r-1}$, $X \in \mathcal{B}(N,r)$ with $v^{\top}Xv = N^2$, and rank(X) = r or $rac{1}{rN}X$ is the density matrix of a separable bipartite quantum state, then $m{E}\in\mathsf{CUT}^N$.

Therefore, all interesting applications of the Theorem must have $rac{1}{rN}X$ be the density matrix of an entangled state.

Any $X \in \mathcal{B}(N,r)$ equals its own *partial transpose* PT(X), the matrix with all blocks transposed. In particular, $PT(X) \geq 0$, making $\frac{1}{rN}X$ a *positive partial transpose (PPT)* state. The structure of PPT entangled states is an active subject in quantum information theory.

Partial transposition also constrains X when E is the Gram matrix of a *unit norm tight frame (UNTF)*, i.e. when *E* is a scaled projection matrix.

Proposition: Partial Transpose Constraint for Feasibility Witness

If $E = (\langle v_i, v_j \rangle)_{i,j=1}^N$ with $v_i \in \mathbb{S}^{r-1}$ forming a UNTF and $X \in \mathcal{B}(N, r)$ with $v^{\top}Xv = N^2$, then $X = vv^{ op} + ilde{X}$ where $ilde{X} \succeq 0$ and its positive eigenvectors belong to the positive eigenspace of $\mathsf{PT}(\boldsymbol{v}\boldsymbol{v}^{\top})$.

This positive eigenspace may be computed through the *Schmidt decomposition* and is related to the SVD of the matrix with columns v_i .

Equiangular Tight Frames are (Usually) SOS_{4}^{HC} Feasible

Definition. Vectors $v_1, \ldots, v_N \in \mathbb{R}^r$ form an *equiangular tight frame (ETF)* if

- 1. (Unit Norm) $\|v_i\|_2 = 1$.
- 2. (Tight Frame) $\sum_{i=1}^{N} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top} = \frac{N}{r} \boldsymbol{I}_{r}$.
- 3. (Equiangular) For any $i \neq j$, $|\langle v_i, v_j \rangle| = \mu$.

ETFs are rare and rigidly structured, with connections to strongly regular graphs, tight spherical designs, Steiner systems, and other exceptional combinatorial objects.

Theorem: SOS^{HC} Feasibility of Equiangular Tight Frames

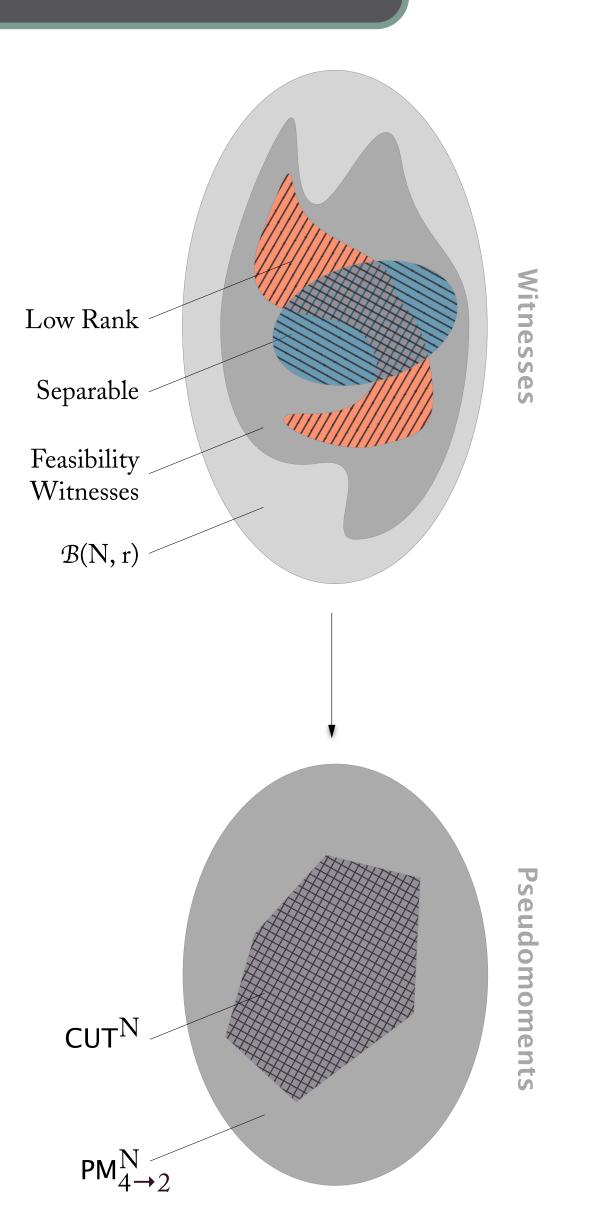
If $v_1,\ldots,v_N\in\mathbb{S}^{r-1}$ form an ETF, and $E=(\langle v_i,v_j\rangle)_{i,i=1}^N$ is the Gram matrix $\mathsf{PM}_{4\to 2}^N$ if and only if $N < \frac{r(r+1)}{2}$.

 $N \leq \frac{r(r+1)}{2}$ always holds; only four cases with equ

In the course of the proof, we obtain the degree 4 pseudomoments explicitly, which are themselves intricately structured and "fine-tuned" to satisfy positive semidefiniteness. They are given by the highly symmetric formula:

$$\tilde{\mathbb{E}}[x_i x_j x_k x_\ell] = \frac{\frac{r(r-1)}{2}}{\frac{r(r+1)}{2} - N} (E_{ij} E_{k\ell} + E_{ik} E_{j\ell} + E_{i\ell} E_{jk}) - \frac{r^2 \left(1 - \frac{1}{N}\right)}{\frac{r(r+1)}{2} - N} \sum_{m=1}^N E_{im}$$

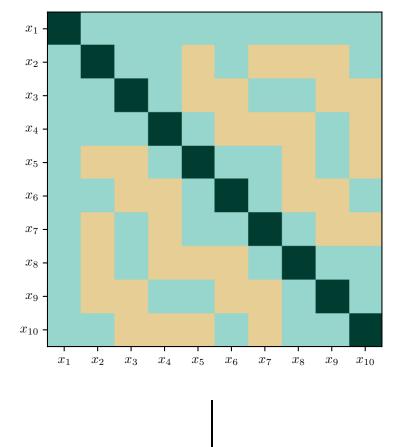
Some ETF Gram matrices (of simplex and Paley ETFs) provably belong to the difference set $\mathsf{PM}_{4\to 2}^N \setminus \mathsf{CUT}^N$, and appear to be the first explicit examples of members of this set.



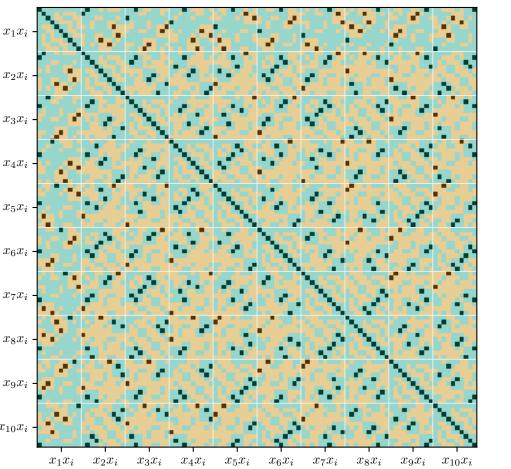
S			
atrix,	then	$oldsymbol{E}\in$	
ality are	known.		

 $E_{jm}E_{km}E_{\ell m}$

Equiangular Tight Frame Gram Matrix



Degree 4 Pseudomoment Matrix



• SOS inequalities. The only known family of inequalities satisfied by degree 4 but not degree 2 pseudoexpectations are the *triangle inequalities*, $(x_i + x_j + x_k)^2 \ge 1$, equivalently $x_i x_j + x_j x_k + x_i x_k \ge -1$. We show that **the triangle inequal**ities are the first of a larger family corresponding to maximal ETFs. We also show that the similar facts $(\sum_{i \in \mathcal{I}} x_i)^2 \ge 1$ for $|\mathcal{I}| \ge 5$ and odd called **hypermetric inequalities are** *not* satisfied by degree 4 pseudoexpectations.

- property for ETFs.

We are interested in particular in the SOS_4^{HC} relaxation of the **Sherrington-Kirkpatrick model**, where $W \sim GOE(N)$. It is known that $SOS_2^{HC}(W) \sim 2N^{3/2}$, and we investigate whether SOS_4^{HC} achieves a constant factor improvement. Using the results shown here and others, this may be related to the following random optimization problem:

This is an instance of the *orthogonal cut* SDP relaxation, which admits several Grothendieck-type inequalities and efficient rank-constrained numerical methods.

Press, 2017.

Applications

• ETF sparsity and spark. If $v_1, \ldots, v_N \in \mathbb{S}^{r-1}$ form an ETF and $V \in \mathbb{R}^{r \times N}$ has the v_i as its columns, we give new upper bounds for $\|\operatorname{row}(V)\|_{2\to 4}$ and $\|\ker(V)\|_{2\to 4}$. These give **lower bounds on the sparsity and spark** of *V*, which are related to efficient encoding and the restricted isometry

• MaxCut integrality gaps. A correspondence between ETFs and strongly regular graphs gives graphs where the SOS_2^{HC} and SOS_4^{HC} relaxations of MaxCut are equal. This does not give an integrality gap, but numerics on a generalization to non-equiangular tight frames indicate that **several families** of strongly regular graphs have MaxCut integrality gaps.

Future Work

 $\langle \boldsymbol{X}, \mathsf{PT}(\boldsymbol{g}\boldsymbol{g}^{\top}) \rangle$ with $\boldsymbol{g} \sim \mathcal{N}(0, \boldsymbol{I}_{\gamma N})$. $\max_{oldsymbol{X} \in \mathbb{R}^{rN imes rN}}$ $X \succeq 0$, diagonal blocks= I_{γ}

References

[1] Boaz Barak and David Steurer. "Sum-of-squares proofs and the quest toward optimal algorithms". In: *arXiv preprint arXiv:1404.5236* (2014). [2] Ingemar Bengtsson and Karol Życzkowski. *Geometry of quantum* states: an introduction to quantum entanglement. Cambridge University

[3] Peter G Casazza, Dan Redmond, and Janet C Tremain. "Real equiangular frames". In: Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on. IEEE. 2008, pp. 715–720.

[4] Monique Laurent. "Sums of squares, moment matrices and optimization over polynomials". In: *Emerging applications of algebraic geometry*. Springer, 2009, pp. 157–270.