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TIGHT FRAMES, QUANTUM INFORMATION, AND DEGREE 4 SUM-OF-SQUARES

Motivation

Several interesting problems (MaxCut, little Grothendieck
problem, ground states of Ising and Sherrington-Kirkpatrick
models) can be written as optimization of quadratic forms
over the hypercube, or optimization of linear functions over
the cut polytope:

MPFC(W) = max ' Wx = max (E, W),

rc{+1N Eccuty

CUTYN = conv({zx™ : & € {+1}N})

= degree 2 moments of distributions over {+1}".

Sum-of-squares (SOS) SDP relaxations of degree 2d give effi-
ciently computable upper bounds on MA¢(W) by optimizing
over pseudomoment matrices PM5, ., 2 CUT" or the associ-
ated pseudoexpectations PEY, 2 {E, : u € M ({x1}V)}:

SOSYS(W) = max (E,W) = max E[xz"Wz].

EecpPMy, FePE),

To measure the computational difficulty of MH“(W), we
look at the quality of SOS relaxations as the degree grows.

Factorizing Pseudomoments

It can be useful to describe a pseudomoment matrix as a
Gram matrix (for rounding, rank-constrained numerics, and
theoretical arguments). For degree 2, this is simple:

PMY, = {E € RV E > 0,diag(E) = 1]
= {E e RV*N . Eij = (’Ui,’vj> where v; € Sr_l} :

We give a more subtle answer for degree 4.

Definition. B(N, r) is the set of positive semidefinite R"V*"N
block matrices where every diagonal block is I, and every
off-diagonal block is symmetric:

B(N,r) = -

Theorem: Gram Matrix Description of SOS}“ Feasibility

E = ((vi,v)},_; € PMy_, with v; € S""! if and only if

there exists X € B(N,r) with v™ Xv = N?¢, where v is the

concatenation of the v;.

IX || < N when X € B(N,r),
SO v is a top eigenvector of X.

Separability and Partial Transposition

Some simple constructions of a witness X are guaranteed to produce “trivial” pseudomo-
ment matrices, those arising from true probability distributions.

Proposition: Low-Rank and Separable Feasibility Witnesses are Trivial

If B = ((vi,vj))szl withv; € S 1, X € B(N,r) with v" Xv = N?, and rank(X) =7 or

%X is the density matrix of a separable bipartite quantum state, then E € CUT".

Therefore, all interesting applications of the Theorem must have %X be the density
matrix of an entangled state.

Any X € B(N,r) equals its own partial transpose PT(X ), the matrix with all blocks
transposed. In particular, PT(X) > 0, making %X a positive partial transpose (PPT) state.
The structure of PPT entangled states is an active subject in quantum information theory.

Partial transposition also constrains X when FE is the Gram matrix of a unit norm tight
frame (UNTF), i.e. when FE is a scaled projection matrix.

Proposition: Partial Transpose Constraint for Feasibility Witness

If E = ((vi,vj))szl with v; € §7~! forming a UNTF and X € B(N,r) with v" Xv = N2,
then X = vv™ + X where X > 0 and its positive eigenvectors belong to the positive

eigenspace of PT(vv").

This positive eigenspace may be computed through the Schmidt decomposition and is re-
lated to the SVD of the matrix with columns v;.
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Equiangular Tight Frames are (Usually) SOSZIC Feasible

Definition. Vectors vy,...,vn € R" form an equiangular tight frame (ETF) if

1. (Unit Norm) ||v;]|» = 1.
2. (Tight Frame) Z]i\le ViV = %Ir.

i

3. (Equiangular) For any i # j, |[{(v;,vj)| = U.

ETFs are rare and rigidly structured, with connections to strongly regular graphs, tight
spherical designs, Steiner systems, and other exceptional combinatorial objects.

Theorem: SOSZ'C Feasibility of Equiangular Tight Frames

N

If v,..., vy € S 1 form an ETF, and FE = (('Ui,'Uj))i’jzl is the Gram matrix, then E &

PM}_, if and only if N < 20,

N < ”72”) always holds; only four cases with equality are known.

In the course of the proof, we obtain the degree 4 pseudomoments explicitly, which are
themselves intricately structured and “fine-tuned” to satisfy positive semidefiniteness.
They are given by the highly symmetric formula:

r(r—1) 12 (1 — % N

- >

Elxixjxixel = 75375 N(EijEM + EiEjo + EivEji) — v N > EimEjmExmEem-
2 2 ' om=

Some ETF Gram matrices (of simplex and Paley ETFs) provably belong to the difference set
PMY_, \ CUTY, and appear to be the first explicit examples of members of this set.
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Equiangular Tight Frame Gram Matrix

Degree 4 Pseudomoment Matrix

Applications

e SOS inequalities. The only known family of inequalities
satisfied by degree 4 but not degree 2 pseudoexpectations
are the triangle inequalities, (Xi+Xj+Xk)2 > 1, equivalently
XiXj+XXk+XxixXx = —1. We show that the triangle inequal-
ities are the first of a larger family corresponding to maxi-
mal ETFs. We also show that the similar facts (3 ;¢ xi)° > 1
for |7| = 5 and odd called hypermetric inequalities are not
satisfied by degree 4 pseudoexpectations.

ETF sparsity and spark. If vq,..., vy € S ! form an ETF
and V e R"™¥ has the v; as its columns, we give new
upper bounds for |[row(V)|>_4 and || ker(V)|>_4. These
give lower bounds on the sparsity and spark of V', which
are related to efficient encoding and the restricted isometry
property for ETFs.

MaxCut integrality gaps. A correspondence between ETFs
and strongly regular graphs gives graphs where the SOSE'C
and SOS! relaxations of MaxCut are equal. This does not
give an integrality gap, but numerics on a generalization to
non-equiangular tight frames indicate that several families
of strongly regular graphs have MaxCut integrality gaps.

Future Work

We are interested in particular in the SOS!“ relaxation of the
Sherrington-Kirkpatrick model, where W ~ GOE(N). It is
known that SOS;<(W) ~ 2N3/2, and we investigate whether
SOSY achieves a constant factor improvement. Using the
results shown here and others, this may be related to the
following random optimization problem:

max (X,PT(gg')) with g ~ N (0, I,n).
XeRrerN
X >0, diagonal blocks=1,
This is an instance of the orthogonal cut SDP relaxation,
which admits several Grothendieck-type inequalities and effi-

cient rank-constrained numerical methods.
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