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Motivation

Several interesting problems (MaxCut, little Grothendieck

problem, ground states of Ising and Sherrington-Kirkpatrick

models) can be written as optimization of quadratic forms

over the hypercube, or optimization of linear functions over

the cut polytope:

MHC(W ) = max
x∈{±1}N

x>Wx = max
E∈CUTN

〈E,W 〉,

CUTN = conv({xx> : x ∈ {±1}N})
= degree 2 moments of distributions over {±1}N.

Sum-of-squares (SOS) SDP relaxations of degree 2d give effi-

ciently computable upper bounds on MHC(W ) by optimizing

over pseudomoment matrices PMN
2d→2 ⊇ CUTN or the associ-

ated pseudoexpectations PEN2d ⊇ {Eµ : µ ∈M1({±1}N)}:

SOSHC
2d(W ) = max

E∈PMN2d→2

〈E,W 〉 = max
Ẽ∈PEN2d

Ẽ [x>Wx] .

To measure the computational difficulty of MHC(W ), we

look at the quality of SOS relaxations as the degree grows.

Factorizing Pseudomoments

It can be useful to describe a pseudomoment matrix as a

Gram matrix (for rounding, rank-constrained numerics, and

theoretical arguments). For degree 2, this is simple:

PMN
2→2 =

{
E ∈ RN×N : E � 0,diag(E) = 1

}
=
{
E ∈ RN×N : Eij = 〈vi,vj〉 where vi ∈ Sr−1

}
.

We give a more subtle answer for degree 4.

Definition. B(N, r) is the set of positive semidefinite RrN×rN

block matrices where every diagonal block is Ir and every

off-diagonal block is symmetric:

B(N, r) =



Ir S{1,2} S{1,3} S{1,4} S{1,5}
S{1,2} Ir S{2,3} S{2,4} S{2,5}
S{1,3} S{2,3} Ir S{3,4} S{3,5}
S{1,4} S{2,4} S{3,4} Ir S{4,5}
S{1,5} S{2,5} S{3,5} S{4,5} Ir

� 0


.

Theorem: Gram Matrix Description of SOSHC
4 Feasibility

E = (〈vi,vj〉)Ni,j=1 ∈ PMN
4→2 with vi ∈ Sr−1 if and only if

there exists X ∈ B(N, r) with v>Xv = N2, where v is the

concatenation of the vi.

Separability and Partial Transposition

Some simple constructions of a witness X are guaranteed to produce “trivial” pseudomo-

ment matrices, those arising from true probability distributions.

Proposition: Low-Rank and Separable Feasibility Witnesses are Trivial

If E = (〈vi,vj〉)Ni,j=1 with vi ∈ Sr−1, X ∈ B(N, r) with v>Xv = N2, and rank(X) = r or
1
rNX is the density matrix of a separable bipartite quantum state, then E ∈ CUTN.

Therefore, all interesting applications of the Theorem must have 1
rNX be the density

matrix of an entangled state.

Any X ∈ B(N, r) equals its own partial transpose PT(X), the matrix with all blocks

transposed. In particular, PT(X) � 0, making 1
rNX a positive partial transpose (PPT) state.

The structure of PPT entangled states is an active subject in quantum information theory.

Partial transposition also constrains X when E is the Gram matrix of a unit norm tight

frame (UNTF), i.e. when E is a scaled projection matrix.

Proposition: Partial Transpose Constraint for Feasibility Witness

If E = (〈vi,vj〉)Ni,j=1 with vi ∈ Sr−1 forming a UNTF and X ∈ B(N, r) with v>Xv = N2,

then X = vv> + X̃ where X̃ � 0 and its positive eigenvectors belong to the positive

eigenspace of PT(vv>).

This positive eigenspace may be computed through the Schmidt decomposition and is re-

lated to the SVD of the matrix with columns vi.

BEkI=êF

PMQ→O
k

CUTk

cÉ~ëáÄáäáíó
táíåÉëëÉë

pÉé~ê~ÄäÉ

içï=o~åâ

W
itnesses

Pseudom
om

ents

Equiangular Tight Frames are (Usually) SOSHC
4 Feasible

Definition. Vectors v1, . . . ,vN ∈ Rr form an equiangular tight frame (ETF) if

1. (Unit Norm) ‖vi‖2 = 1.

2. (Tight Frame)
∑N
i=1viv

>
i =

N
r Ir .

3. (Equiangular) For any i ≠ j, |〈vi,vj〉| = µ.

ETFs are rare and rigidly structured, with connections to strongly regular graphs, tight

spherical designs, Steiner systems, and other exceptional combinatorial objects.

Theorem: SOSHC
4 Feasibility of Equiangular Tight Frames

If v1, . . . ,vN ∈ Sr−1 form an ETF, and E = (〈vi,vj〉)Ni,j=1 is the Gram matrix, then E ∈
PMN

4→2 if and only if N < r(r+1)
2 .

In the course of the proof, we obtain the degree 4 pseudomoments explicitly, which are

themselves intricately structured and “fine-tuned” to satisfy positive semidefiniteness.

They are given by the highly symmetric formula:

Ẽ[xixjxkx`] =
r(r−1)

2
r(r+1)

2 −N
(EijEk` + EikEj` + Ei`Ejk)−

r 2
(
1− 1

N

)
r(r+1)

2 −N

N∑
m=1

EimEjmEkmE`m.

Some ETF Gram matrices (of simplex and Paley ETFs) provably belong to the difference set

PMN
4→2 \ CUTN, and appear to be the first explicit examples of members of this set.
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Applications

• SOS inequalities. The only known family of inequalities

satisfied by degree 4 but not degree 2 pseudoexpectations

are the triangle inequalities, (xi+xj+xk)2 ≥ 1, equivalently

xixj+xjxk+xixk ≥ −1.We show that the triangle inequal-

ities are the first of a larger family corresponding to maxi-

mal ETFs. We also show that the similar facts (
∑
i∈I xi)2 ≥ 1

for |I| ≥ 5 and odd called hypermetric inequalities are not

satisfied by degree 4 pseudoexpectations.

• ETF sparsity and spark. If v1, . . . ,vN ∈ Sr−1 form an ETF

and V ∈ Rr×N has the vi as its columns, we give new

upper bounds for ‖row(V )‖2→4 and ‖ker(V )‖2→4. These

give lower bounds on the sparsity and spark of V , which

are related to efficient encoding and the restricted isometry

property for ETFs.

•MaxCut integrality gaps. A correspondence between ETFs

and strongly regular graphs gives graphs where the SOSHC
2

and SOSHC
4 relaxations of MaxCut are equal. This does not

give an integrality gap, but numerics on a generalization to

non-equiangular tight frames indicate that several families

of strongly regular graphs have MaxCut integrality gaps.

Future Work

We are interested in particular in the SOSHC
4 relaxation of the

Sherrington-Kirkpatrick model, where W ∼ GOE(N). It is

known that SOSHC
2 (W ) ∼ 2N3/2, and we investigate whether

SOSHC
4 achieves a constant factor improvement. Using the

results shown here and others, this may be related to the

following random optimization problem:

max
X∈RrN×rN

X�0, diagonal blocks=Ir

〈X , PT(gg>)〉 with g ∼N (0,IrN).

This is an instance of the orthogonal cut SDP relaxation,

which admits several Grothendieck-type inequalities and effi-

cient rank-constrained numerical methods.
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‖X‖ ≤ N when X ∈ B(N, r),
so v is a top eigenvector of X .

N ≤ r(r+1)
2 always holds; only four cases with equality are known.


