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At a glance

Background Information processing is constrained by
the laws of thermodynamics. For example, erasing a
bit requires at least kBT ln 2 in dissipated heat.

Goal Find the fundamental energetic limits of learning:
How much dissipation is necessary to learn?

Results
•The dissipation of any learning device, e.g. a neural net-
work, is an upper bound on the amount of information
it can extract from data or learn from a teacher.

•There is a trade-off between dissipation, speed and
reliability of any learning device in the steady state.

Perspectives
•Can quantum coherence increase the thermodynamic
efficiency of learning?

•Do biological networks, e.g. the retina, show signs of
adaptation with respect to thermodynamic constraints?

Motivation: the fundamental thermodynamic cost of information processing

Landauer’s erasure principle: W ≥ kBT ln 2

Experimentally [1, 2]: overdamped
colloidal particle in a laser trap:

Ûx(t) = −µ∂xV(x, λ) + ζ(t)

〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′) D = T µ

Experimental protocol for the erasure of a
single bit, reprinted from [1].

Stochastic Thermodynamics [3] pro-
vides consistent definitions of heat
and work along single trajectories for
small, fluctuating systems far from
equilibrium:

d̄w = (∂λV(x, λ)) d λ
d̄w = d V +d̄q

Work performed during bit erasure (blue) and using a
similar, but symmetric protocol without erasure (red) [2].

The cost of learning?

Toy model Given inputs ξ µ ∈ RN with
fixed true labels σ

µ
T = ±1, µ =

1, . . . , P, a Perceptron with weights
w ∈ RN gives outputs σµ = sgn(wξ µ).
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Goal of learning Adjust the weights
w s.t. σµ

T = σµ for as many inputs as
possible with minimal dissipation.

Dynamics Langevin equations for w:
Ûwt = −wt + f

[
wt, {ξ

µ, σ
µ
T }, t

]
+ ζ(t)

〈ζn(t)ζm(t′)〉 = 2Dδnmδ(t − t′)

Inferring a model from data
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True labels σµ
T are drawn i.i.d. from p(σµ

T ) = 1/2, inde-
pendent of ξ µ and of each other. We can show that for any
P, N and learning algorithm with the above dynamics [4]

P∑
µ=1

I(σµ
T : σµ) ≤

N∑
n=1
[∆S(wn) + ∆Qn]

I(σµ
T : σµ) mutual information between the true and

the predicted label of the µth input
∆S(wn) Change in Shannon entropy of themarginalised
distribution p(wn)

∆Qn heat dissipated by the nth weight during learning.

The cost of generalising
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True labels are now supplied by another Perceptron with
weights T ∈ RN, the teacher, such that σµ

T = sgn(Tξ µ).
Energetic limits can be formulated by bounding the effi-
ciency of learning [5]

η ≡
I(σT : σ)
∆S(wn) +Qn

≤ 1

I(σT : σ) is the mutual information between the true and
the predicted label averaged over ξ; it is related to the
generalisation error εg via

I(σT : σ) = ln 2 − S(εg)

where S(x) = −x ln x − (1 − x) ln(1 − x).

Case study
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Learning dynamics with continuous time t:

Ûw(t) = −kw(t) + ν(t)ξ µ(t)σµ(t)
T F (·) + ζ(t)

Different learning algorithms can be implemented by
choosing the appropriate F , e.g. F = 1 for Hebbian and
F = θ(−σ

µ
Twξ

µ) for Perceptron Learning.
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Thermodynamic efficiency of learning η vs learning rate ν and
potential stiffness k for online learning by a Perceptron using

different learning algorithms [5].

Universal costs of learning and a time-energy-speed trade-off

What about learning more complicated functions, say a smile?
What about deep neural networks? Unsupervised learning? Fluctuations? The role of time?

5.0 2.5 0.0 2.5 5.0
1

5.0

2.5

0.0

2.5

5.0

2

= 1
= 1

•Draw samples y from an unknown
distribution q(y |B) with possibly
time-dependent parameters B.

•The student adjusts the parameters w
of his model p(y |w) given the data
Y = {y1, . . . , yD}, and possibly using
feedback from its own outputs
Y′ = {y′1, . . . , y

′
D}.

B
B

y1 y2 y3 . . .
Y

w0 w1 w2 . . .

y′1 y′2 y′3 . . .
Y ′

Wemodel the learning dynamics us-
ing Bayesian networks like above.
The integral fluctuation theorem [6]
generalises the previous bounds to
give the universal costs of learning:

〈e−∆stotw +i(wτ:B,Y,Y)〉 = 1

Small letters denote quantities along
a single trajectory.

•Building on the recent “Thermody-
namic uncertainty relation” [7, 8]

• Reliability of learning R ≡ inverse
variance of acquired information

• Steady state trade-off between R, the
speed of learning v and the energetic
cost of the learning device, measured
by its entropy production rate ÛStot:

ÛStot ≥ Rv2t
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