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At a glance

Background Information processing is constrained by
the laws of thermodynamics. For example, erasing a
bit requires at least kBT ln 2 in dissipated heat.

Goal Find the fundamental energetic limits of learning:
How much dissipation is necessary to learn?

Results
• The dissipation of any learning device, e.g. a neural net-
work, is an upper bound on the amount of information
it can extract from data or learn from a teacher.

• There is a trade-off between dissipation, speed and
reliability of any learning device in the steady state.

Perspectives
• Can quantum coherence increase the thermodynamic
efficiency of learning?

•Do biological networks, e.g. the retina, show signs of
adaptation with respect to thermodynamic constraints?

Motivation: the fundamental thermodynamic cost of information processing

Landauer’s erasure principle: W ≥ kBT ln 2

Experimentally [1, 2]: overdamped
colloidal particle in a laser trap:

Ûx(t) = −µ∂xV(x, λ) + ζ(t)

〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′) D = T µ

Experimental protocol for the erasure of a
single bit, reprinted from [1].

Stochastic Thermodynamics [3] pro-
vides consistent definitions of heat
and work along single trajectories for
small, fluctuating systems far from
equilibrium:

d̄w = (∂λV(x, λ)) d λ
d̄w = d V +d̄q

Work performed during bit erasure (blue) and using a
similar, but symmetric protocol without erasure (red) [2].

The cost of learning?

Toy model Given inputs ξ µ ∈ RN with
fixed true labels σ

µ
T = ±1, µ =

1, . . . , P, a Perceptron with weights
w ∈ RN gives outputs σµ = sgn(wξ µ).
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Goal of learning Adjust the weights
w s.t. σµ

T = σµ for as many inputs as
possible with minimal dissipation.

Dynamics Langevin equations for w:
Ûwt = −wt + f

[
wt, {ξ

µ, σ
µ
T }, t

]
+ ζ(t)

〈ζn(t)ζm(t′)〉 = 2Dδnmδ(t − t′)

Inferring a model from data
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True labels σµ
T are drawn i.i.d. from p(σµ

T ) = 1/2, inde-
pendent of ξ µ and of each other. We can show that for any
P, N and learning algorithm with the above dynamics [4]

P∑
µ=1

I(σµ
T : σµ) ≤

N∑
n=1
[∆S(wn) + ∆Qn]

I(σµ
T : σµ) mutual information between the true and

the predicted label of the µth input
∆S(wn) Change in Shannon entropy of themarginalised
distribution p(wn)

∆Qn heat dissipated by the nth weight during learning.

The cost of generalising
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True labels are now supplied by another Perceptron with
weights T ∈ RN, the teacher, such that σµ

T = sgn(Tξ µ).
Energetic limits can be formulated by bounding the effi-
ciency of learning [5]

η ≡
I(σT : σ)
∆S(wn) +Qn

≤ 1

I(σT : σ) is the mutual information between the true and
the predicted label averaged over ξ; it is related to the
generalisation error εg via

I(σT : σ) = ln 2 − S(εg)

where S(x) = −x ln x − (1 − x) ln(1 − x).

Case study
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Learning dynamics with continuous time t:

Ûw(t) = −kw(t) + ν(t)ξ µ(t)σµ(t)
T F (·) + ζ(t)

Different learning algorithms can be implemented by
choosing the appropriate F , e.g. F = 1 for Hebbian and
F = θ(−σ

µ
Twξ

µ) for Perceptron Learning.
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Thermodynamic efficiency of learning η vs learning rate ν and
potential stiffness k for online learning by a Perceptron using

different learning algorithms [5].

Universal costs of learning and a time-energy-speed trade-off

What about learning more complicated functions, say a smile?
What about deep neural networks? Unsupervised learning? Fluctuations? The role of time?
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• Draw samples y from an unknown
distribution q(y |B) with possibly
time-dependent parameters B.

• The student adjusts the parameters w
of his model p(y |w) given the data
Y = {y1, . . . , yD}, and possibly using
feedback from its own outputs
Y′ = {y′1, . . . , y

′
D}.

B
B

y1 y2 y3 . . .
Y

w0 w1 w2 . . .

y′1 y′2 y′3 . . .
Y ′

Wemodel the learning dynamics us-
ing Bayesian networks like above.
The integral fluctuation theorem [6]
generalises the previous bounds to
give the universal costs of learning:

〈e−∆stotw +i(wτ:B,Y,Y)〉 = 1

Small letters denote quantities along
a single trajectory.

• Building on the recent “Thermody-
namic uncertainty relation” [7, 8]

• Reliability of learning R ≡ inverse
variance of acquired information

• Steady state trade-off between R, the
speed of learning v and the energetic
cost of the learning device, measured
by its entropy production rate ÛStot:

ÛStot ≥ Rv2t
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